基于OpenCV的SIFT特征匹配指纹识别

引言

指纹识别是生物特征识别技术中最常用的方法之一。本文将介绍如何使用Python和OpenCV实现一个简单的指纹识别系统,该系统基于SIFT(尺度不变特征变换)算法进行特征提取和匹配。

一、概述

本指纹识别系统主要包含三个核心功能:

  1. 特征提取:使用SIFT算法提取指纹图像的关键点和特征描述符
  2. 特征匹配:使用FLANN(快速近似最近邻)匹配器进行特征点匹配
  3. 身份识别:通过匹配点数量判断指纹身份

二、关键代码解析

1. SIFT特征提取与匹配

def getNum(src, model):
    # 读取图像
    img1 = cv2.imread(src)
    img2 = cv2.imread(model)
    
    # 创建SIFT对象并检测关键点和描述符
    sift = cv2.SIFT_create()
    kp1, des1 = sift.detectAndCompute(img1, None)
    kp2, des2 = sift.detectAndCompute(img2, None)
    
    # 使用FLANN匹配器
    flann = cv2.FlannBasedMatcher()
    matches = flann.knnMatch(des1, des2, k=2)
    
    # 应用Lowe's比率测试筛选优质匹配
    ok = []
    for m, n in matches:
        if m.distance < 0.8 * n.distance:
            ok.append(m)
    
    return len(ok)

这段代码定义了一个 getNum() 函数,用于计算两张图片(指纹图像)之间的特征匹配点数量。它使用了 SIFT(尺度不变特征变换)算法FLANN(快速近似最近邻)匹配器 来比较两张图片的相似度。以下是详细解释:


函数功能
getNum(src, model) 计算 src(待查询图像)和 model(数据库中的参考图像)之间的 匹配特征点数量,用于衡量两张图片的相似度。


代码解析

  1. 读取图像

    img1 = cv2.imread(src)  # 读取待查询图像
    img2 = cv2.imread(model)  # 读取数据库中的参考图像
    
    • 使用 OpenCV 的 imread() 加载两张图片。
  2. 提取 SIFT 特征

    sift = cv2.SIFT_create()  # 创建 SIFT 特征检测器
    kp1, des1 = sift.detectAndCompute(img1, None)  # 检测关键点并计算描述符(img1)
    kp2, des2 = sift.detectAndCompute(img2, None)  # 检测关键点并计算描述符(img2)
    
    • SIFT(Scale-Invariant Feature Transform) 是一种局部特征检测算法,可以提取图像中的关键点(kp1, kp2)和它们的描述符(des1, des2)。
    • 描述符(des1, des2)是用于匹配的关键点特征向量。
  3. FLANN 匹配器(近似最近邻搜索)

    flann = cv2.FlannBasedMatcher()  # 创建 FLANN 匹配器
    matches = flann.knnMatch(des1, des2, k=2)  # 对描述符进行 KNN 匹配(k=2)
    
    • FLANN(Fast Library for Approximate Nearest Neighbors) 是一种高效的近似最近邻搜索算法,用于快速匹配特征点。
    • k=2 表示对每个查询点,返回 2 个最近邻匹配点(用于后续筛选)。
  4. 筛选优质匹配(Lowe’s Ratio Test)

    ok = []  # 存储优质匹配点
    for m, n in matches:
        if m.distance < 0.8 * n.distance:  # 如果最佳匹配的距离远小于次佳匹配
            ok.append(m)  # 则认为是可靠匹配
    
    • Lowe’s Ratio Test 用于剔除错误匹配:
      • m 是最佳匹配,n 是次佳匹配。
      • 如果 m.distance < 0.8 * n.distance,说明 m 是一个可靠的匹配点。
    • 最终 ok 列表存储了所有优质匹配点。
  5. 返回匹配数量

    num = len(ok)  # 计算优质匹配点的数量
    return num
    
    • 返回 srcmodel 两张图片之间的 可靠匹配点数量

总结

  • 输入src(待查询图像路径)、model(参考图像路径)。
  • 输出:两张图片之间的 优质匹配点数量(数值越大,相似度越高)。
  • 用途:通常用于指纹识别、图像检索等任务,判断两张图片的相似程度。

2. 指纹身份识别

def getID(src, database):
    max = 0
    for file in os.listdir(database):
        model = os.path.join(database, file)
        num = getNum(src, model)
        print("文件名:", file, "匹配点个数:", num)
        if num > max:
            max = num
            name = file
    ID = name[0]
    if max < 100:  # 匹配点过少,认为是未知指纹
        ID = 9999
    return ID

这段代码是一个用于从数据库中识别最匹配文件的函数。我来逐步解释它的功能:

  1. 函数接收两个参数

    • src:要匹配的源文件(可能是待识别的指纹图像)
    • database:数据库目录路径,包含多个比对样本文件
  2. 函数工作流程

    • 初始化max变量为0,用于记录最高匹配分数
    • 遍历数据库目录中的所有文件
    • 对每个文件,调用getNum()函数计算它与源文件src的匹配点数(这个函数应该在别处定义)
    • 打印当前文件名和它的匹配点数
    • 如果当前文件的匹配点数高于之前记录的最高值,就更新最高值并记录文件名
    • 最终从最高匹配的文件名中提取第一个字符作为ID
    • 如果最高匹配点数小于100(阈值),则认为没有足够匹配,返回特殊ID 9999
  3. 返回值

    • 返回识别出的ID(文件名首字符)或9999(表示无法识别)

匹配逻辑

  1. 遍历指纹数据库中的所有样本
  2. 计算待识别指纹与每个样本的匹配点数量
  3. 选择匹配点最多的样本作为识别结果
  4. 如果最大匹配点数小于100,则认为不在数据库中

3. 姓名映射

def getName(ID):
    nameID = {0:'张三',1:'李四',2:'王五',3:'赵六',4:'朱七',5:'钱八',
              6:'曹九',7:'王二麻子',8:'吴迪',9:'李教官',9999:"没找到"}
    return nameID.get(int(ID))

三、使用示例

if __name__ == "__main__":
    src = "test.bmp"  # 待识别指纹
    database = "database\\database"  # 指纹数据库路径
    ID = getID(src, database)  # 获取指纹ID
    name = getName(ID)  # 根据ID获取姓名
    print("识别结果为:", name)

四、技术分析

  1. SIFT算法优势

    • 尺度不变性:对图像缩放具有鲁棒性
    • 旋转不变性:不受图像旋转影响
    • 光照不变性:对光照变化不敏感
  2. FLANN匹配器

    • 相比暴力匹配(BFMatcher),速度更快
    • 适合大规模特征匹配
  3. Lowe’s比率测试

    • 通过比较最近邻和次近邻的距离比值过滤误匹配
    • 提高匹配准确率

五、完整代码

import os
import cv2


def getNum(src,model):
    img1 = cv2.imread(src)
    img2 = cv2.imread(model)
    sift = cv2.SIFT_create()
    kp1,des1 = sift.detectAndCompute(img1,None)
    kp2,des2 = sift.detectAndCompute(img2,None)
    flann = cv2.FlannBasedMatcher()
    matches = flann.knnMatch(des1,des2,k=2)
    ok = []
    for m,n in matches:
        if m.distance < 0.8 * n.distance:
            ok.append(m)
    num = len(ok)
    return num

"""========================获取指纹编号=============================="""
def getID(src,database):
    max = 0
    for file in os.listdir(database):
        model = os.path.join(database,file)
        num = getNum(src,model)
        print("文件名:",file,"匹配点个数:",num)
        if num > max:
            max = num
            name = file
    ID = name[0]
    if max < 100:  #src图片不一定是库里面人的指纹
        ID = 9999
    return ID
"""=========================根据指纹编号,获取对应姓名================="""
def getName(ID):
    nameID = {0:'张三',1:'李四',2:'王五',3:'赵六',4:'朱七',5:'钱八',
              6:'曹九',7:'王二麻子',8:'吴迪',9:'李教官',9999:"没找到"}
    name = nameID.get(int(ID))
    return name
"""==========================主函数================================"""
if __name__ == "__main__":
    src = "test.bmp"
    database = "database\\database"
    ID = getID(src,database)
    name = getName(ID)
    print("识别结果为:",name)

六、总结

本文实现了一个基于SIFT特征的指纹识别系统,虽然相对简单,但包含了指纹识别的基本流程。该系统可以进一步扩展为更复杂的生物特征识别系统,如加入活体检测、多模态识别等功能。

适用场景

  • 小型考勤系统
  • 门禁系统
  • 个人设备身份验证

希望本文能帮助读者理解指纹识别的基本原理和实现方法。如有任何问题,欢迎在评论区留言讨论。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值