Erf



is the "error function" encountered in integrating the normal distribution (which is a normalized form of the Gaussian function). It is an entire function defined by
![]() |
(1)
|
Note that some authors (e.g., Whittaker and Watson 1990, p. 341) define without the leading factor of
.
Erf is implemented in Mathematica as Erf[z]. A two-argument form giving is also implemented as Erf[z0, z1].
Erf satisfies the identities
![]() | ![]() | ![]() |
(2)
|
![]() | ![]() | ![]() |
(3)
|
![]() | ![]() | ![]() |
(4)
|
where is erfc, the complementary error function, and
is a confluent hypergeometric function of the first kind. For
,
![]() |
(5)
|
where is the incomplete gamma function.
Erf can also be defined as a Maclaurin series
![]() | ![]() | ![]() |
(6)
|
![]() | ![]() | ![]() |
(7)
|
(Sloane's A007680). Similarly,
![]() |
(8)
|
(Sloane's A103979 and A103980).
For ,
may be computed from
![]() | ![]() | ![]() |
(9)
|
![]() | ![]() | ![]() |
(10)
|
(Sloane's A000079 and A001147; Acton 1990).
For ,
![]() | ![]() | ![]() |
(11)
|
![]() | ![]() | ![]() |
(12)
|
Using integration by parts gives
![]() | ![]() | ![]() |
(13)
|
![]() | ![]() | ![]() |
(14)
|
![]() | ![]() | ![]() |
(15)
|
![]() | ![]() | ![]() |
(16)
|
so
![]() |
(17)
|
and continuing the procedure gives the asymptotic series
![]() | ![]() | ![]() |
(18)
|
![]() | ![]() | ![]() |
(19)
|
![]() | ![]() | ![]() |
(20)
|
(Sloane's A001147 and A000079).
Erf has the values
![]() | ![]() | ![]() |
(21)
|
![]() | ![]() | ![]() |
(22)
|
It is an odd function
![]() |
(23)
|
and satisfies
![]() |
(24)
|
Erf may be expressed in terms of a confluent hypergeometric function of the first kind as
![]() | ![]() | ![]() |
(25)
|
![]() | ![]() | ![]() |
(26)
|
Its derivative is
![]() |
(27)
|
where is a Hermite polynomial. The first derivative is
![]() |
(28)
|
and the integral is
![]() |
(29)
|
![]() |
Erf can also be extended to the complex plane, as illustrated above.
A simple integral involving erf that Mathematica 5.1 cannot do is given by
![]() |
(30)
|
(M. R. D'Orsogna, pers. comm., May 9, 2004). More complicated integrals include
![]() |
(31)
|
(M. R. D'Orsogna, pers. comm., Dec. 15, 2005).
Erf has the continued fraction
![]() | ![]() | ![]() |
(32)
|
![]() | ![]() | ![]() |
(33)
|
(Wall 1948, p. 357), first stated by Laplace in 1805 and Legendre in 1826 (Olds 1963, p. 139), proved by Jacobi, and rediscovered by Ramanujan (Watson 1928; Hardy 1999, pp. 8-9).
Definite integrals involving include Definite integrals involving
include
![]() | ![]() | ![]() |
(34)
|
![]() | ![]() | ![]() |
(35)
|
![]() | ![]() | ![]() |
(36)
|
![]() | ![]() | ![]() |
(37)
|
![]() | ![]() | ![]() |
(38)
|
The first two of these appear in Prudnikov et al. (1990, p. 123, eqns. 2.8.19.8 and 2.8.19.11), with ,
.
A complex generalization of is defined as
![]() | ![]() | ![]() |
(39)
|
![]() | ![]() | ![]() |
(40)
|
Integral representations valid only in the upper half-plane are given by
![]() | ![]() | ![]() |
(41)
|
![]() | ![]() | ![]() |
(42)
|