- 博客(1)
- 收藏
- 关注
转载 卷积神经网络的学习笔记1
一、结构概述神经元的三维排列。卷积神经网络机构基于一个假设——输入数据是图像。所以这种特有属性,使得前向传播函数实现起来更高效,并且大幅度降低了网络中参数的数量。在神经网络中:输入是一个向量,然后每个隐层由若干的神经元组成,每个神经元都与前一层中的所有神经元连接。常规的神经网络对于大尺寸图像效果不尽人意,因为在全连接下, 权重和偏差参数会变得很多,导致网络过拟合等问题。与常规神经网络不同,卷积神经网络的各层中的神经元是3维排列的:宽度、高度、和深度(这里的深度指的是激活数据体的第三个维度,而不是整个网络的深
2020-05-18 18:30:11 1719
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人