树状数组拾遗

树状数组相对线段树来说,coding难度小很多。虽然用处不及线段树,但也能解决相当一部分问题。

参考http://community.topcoder.com/tc?module=Static&d1=tutorials&d2=binaryIndexedTrees这篇文章,找到两个遗漏的点。

1、查找sum(i) == k的i。由于树状数组的特性,我们可以从最高位bit来依次确定。效率是log(n),但要注意和二分法差别很大。

2、二维树状数组。

#include <iostream>
#include <cstdio>
using namespace std;

const int N = 10000;
int a[N][N];
int nx = 100;
int ny = 100;
int lowbit(int k)
{
    return k & -k;
}

int sum(int x,int y)
{
    int ans = 0;
    while ( x > 0)
    {
        int y1 = y;
        while ( y1 > 0)
        {
            ans += a[x][y1];
            y1 -= lowbit(y1);
        }
        x -= lowbit(x);
    }
    return ans;
}

void add(int x,int y,int w)
{
    while ( x <= nx)
    {
        int y1 = y;
        while (y1 <= ny)
        {
            a[x][y1] += w;
            y1 += lowbit(y1);
        }
        x += lowbit(x);
    }
}
int main()
{
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值