Datawhale零基础入门CV赛事
Zebbbb
这个作者很懒,什么都没留下…
展开
-
Datawhale 零基础入门CV赛事-Task5 模型集成
文章目录Datawhale 零基础入门CV赛事-Task5 模型集成学习目标集成学习方法深度学习中的集成学习DropoutTTASnapshot结果后处理本章小结Datawhale 零基础入门CV赛事-Task5 模型集成在上一章我们学习了如何构建验证集,如何训练和验证。本章作为本次赛题学习的最后一章,将会讲解如何使用集成学习提高预测精度。本章讲解的知识点包括:集成学习方法、深度学习中的集成学习和结果后处理思路。学习目标学习集成学习方法以及交叉验证情况下的模型集成学会使用深度学习模型的集成学习原创 2020-05-31 21:01:57 · 406 阅读 · 1 评论 -
Datawhale 零基础入门CV赛事-Task4 模型训练与验证
文章目录Datawhale 零基础入门CV赛事-Task4 模型训练与验证学习目标构造验证集模型训练与验证Datawhale 零基础入门CV赛事-Task4 模型训练与验证在上一章节我们构建了一个简单的CNN进行训练,并可视化了训练过程中的误差损失和第一个字符预测准确率,但这些还远远不够。一个成熟合格的深度学习训练流程至少具备以下功能:在训练集上进行训练,并在验证集上进行验证;模型可以保存最优的权重,并读取权重;记录下训练集和验证集的精度,便于调参。为此本章将从构建验证集、模型训练和验证、模原创 2020-05-29 23:53:42 · 219 阅读 · 1 评论 -
Datawhale 零基础入门CV赛事-Task3 字符识别模型
文章目录Datawhale 零基础入门CV赛事-Task3 字符识别模型Datawhale 零基础入门CV赛事-Task3 字符识别模型原创 2020-05-26 10:06:51 · 210 阅读 · 0 评论 -
Datawhale 零基础入门CV赛事-Task2 数据读取与数据扩增
文章目录Datawhale 零基础入门CV赛事-Task2 数据读取与数据扩增学习目标图像读取PillowOpenCV数据扩增方法Datawhale 零基础入门CV赛事-Task2 数据读取与数据扩增本章主要内容为数据读取、数据扩增方法和Pytorch读取赛题数据三个部分组成。学习目标学习Python和Pytorch中图像读取。学会扩增方法和Pytorch读取赛题数据。图像读取由于赛题数据是图像数据,赛题的任务是识别图像中的字符。因此我们首先需要完成对数据的读取操作,在Python中有很多原创 2020-05-23 13:17:27 · 205 阅读 · 0 评论 -
Datawhale 零基础入门CV赛事-Task1 赛题理解
文章目录Datawhale 零基础入门CV赛事-Task1 赛题理解1. 学习目标Datawhale 零基础入门CV赛事-Task1 赛题理解赛题名称:零基础入门CV赛事-街道字符识别赛题地址赛题目标:通过这道赛题可以引导大家走入计算机视觉的世界,主要针对竞赛选手上手视觉赛题,提高对数据建模能力。赛题任务:赛题以计算机视觉中字符识别为背景,要求选手预测街道字符编码,这是一个典型的字符识别问题。为了简化赛题难度,赛题数据采用公开数据集SVHN,因此大家可以选择很多相应的paper作为思路参考。1原创 2020-05-19 23:21:18 · 379 阅读 · 1 评论