C. Karen and Game
题意:
1.给你一个矩阵
2.每次可以给一行或一列减1
3.求减的最小次数
思路:
1.当矩阵的最小值
min
不为
0
,且行列数不同时,行少每行减掉
2.执行完第1步后,算是初始化完毕。接下来怎么减都无所谓了。只要最终能减完,那就成立,不然不成立。
证明如下:
1.初始化减去最小值后,一定至少存在一个点为0。
2.初始化后,假设第 i <script type="math/tex" id="MathJax-Element-46">i</script> 行的最小值是2。 如果你这一行不减去2,那你一定要通过所有的列,每一列减去2来消去这一行的2。 这一个跟前面一定存在一个非0点矛盾,所以假设不成立。
3.所以这一行一定要减去2。
4.所以行列减的方案已经固定下来了,也就是随便暴力减。
代码:
#include <bits/stdc++.h>
using namespace std;
int mp[110][110];
int row[110];
int col[110];
int main() {
int n, m;
scanf("%d%d", &n, &m);
int minn = 0x3f3f3f3f;
//找到最小值后将矩阵每个值减去最小值
//即使得矩阵至少有一个点为0
for(int i = 1; i <= n; i++) {
for(int j = 1; j <= m; j++) {
scanf("%d", &mp[i][j]);
minn = min(minn, mp[i][j]);
}
}
for(int i = 1; i <= n; i++) {
for(int j = 1; j <= m; j++) {
mp[i][j] -= minn;
}
}
vector<int>r; //行
vector<int>c; //列
//每一行/列减去1
for(int i = 0; i < minn; i++) {
if(n > m) {
for(int i = 1; i <= m; i++)
c.push_back(i);
} else {
for(int i = 1; i <= n; i++)
r.push_back(i);
}
}
//初始化完毕后,只要能减就减,证明如上面。
//如果矩阵最终都为0,说明成立,否则不成立。
memset(row, 0x3f3f3f3f, sizeof(row));
memset(col, 0x3f3f3f3f, sizeof(col));
//row
for(int i = 1; i <= n; i++)
for(int j = 1; j <= m; j++)
row[i] = min(row[i], mp[i][j]);
for(int i = 1; i <= n; i++) {
if(row[i] != 0) {
for(int j = 1; j <= m; j++)
mp[i][j] -= row[i];
while(row[i]--)
r.push_back(i);
}
}
//col
for(int i = 1; i <= m; i++)
for(int j = 1; j <= n; j++)
col[i] = min(col[i], mp[j][i]);
for(int i = 1; i <= m; i++) {
if(col[i] != 0) {
for(int j = 1; j <= n; j++)
mp[j][i] -= col[i];
while(col[i]--)
c.push_back(i);
}
}
//不成立情况
for(int i = 1; i <= n; i++) {
for(int j = 1; j <= m; j++) {
if(mp[i][j] > 0) {
puts("-1");
return 0;
}
}
}
//成立情况
cout << r.size() + c.size() << endl;
for(int i = 0; i < r.size(); i++)
printf("row %d\n", r[i]);
for(int i = 0; i < c.size(); i++)
printf("col %d\n", c[i]);
}