Codeforces Round #419 (Div. 2) C. Karen and Game【贪心】

C. Karen and Game

题意:

1.给你一个矩阵
2.每次可以给一行或一列减1
3.求减的最小次数

思路:

1.当矩阵的最小值 min 不为 0 ,且行列数不同时,行少每行减掉 min ,列少每列减掉 min
2.执行完第1步后,算是初始化完毕。接下来怎么减都无所谓了。只要最终能减完,那就成立,不然不成立。

证明如下:

1.初始化减去最小值后,一定至少存在一个点为0。

2.初始化后,假设第 i <script type="math/tex" id="MathJax-Element-46">i</script> 行的最小值是2。 如果你这一行不减去2,那你一定要通过所有的列,每一列减去2来消去这一行的2。 这一个跟前面一定存在一个非0点矛盾,所以假设不成立。

3.所以这一行一定要减去2。

4.所以行列减的方案已经固定下来了,也就是随便暴力减。

代码:

#include <bits/stdc++.h>
using namespace std;
int mp[110][110];
int row[110];
int col[110];
int main() {
    int n, m;
    scanf("%d%d", &n, &m);
    int minn = 0x3f3f3f3f;
    //找到最小值后将矩阵每个值减去最小值
    //即使得矩阵至少有一个点为0
    for(int i = 1; i <= n; i++) {
        for(int j = 1; j <= m; j++) {
            scanf("%d", &mp[i][j]);
            minn = min(minn, mp[i][j]);
        }
    }
    for(int i = 1; i <= n; i++) {
        for(int j = 1; j <= m; j++) {
            mp[i][j] -= minn;
        }
    }
    vector<int>r; //行
    vector<int>c; //列

    //每一行/列减去1
    for(int i = 0; i < minn; i++) {
        if(n > m) {
            for(int i = 1; i <= m; i++)
                c.push_back(i);
        } else {
            for(int i = 1; i <= n; i++)
                r.push_back(i);
        }
    }

    //初始化完毕后,只要能减就减,证明如上面。
    //如果矩阵最终都为0,说明成立,否则不成立。
    memset(row, 0x3f3f3f3f, sizeof(row));
    memset(col, 0x3f3f3f3f, sizeof(col));
    //row
    for(int i = 1; i <= n; i++)
        for(int j = 1; j <= m; j++)
            row[i] = min(row[i], mp[i][j]);
    for(int i = 1; i <= n; i++) {
        if(row[i] != 0) {
            for(int j = 1; j <= m; j++)
                mp[i][j] -= row[i];
            while(row[i]--)
                r.push_back(i);
        }
    }
    //col
    for(int i = 1; i <= m; i++)
        for(int j = 1; j <= n; j++)
            col[i] = min(col[i], mp[j][i]);
    for(int i = 1; i <= m; i++) {
        if(col[i] != 0) {
            for(int j = 1; j <= n; j++)
                mp[j][i] -= col[i];
            while(col[i]--)
                c.push_back(i);
        }
    }

    //不成立情况
    for(int i = 1; i <= n; i++) {
        for(int j = 1; j <= m; j++) {
            if(mp[i][j] > 0) {
                puts("-1");
                return 0;
            }
        }
    }
    //成立情况
    cout << r.size() + c.size() << endl;
    for(int i = 0; i < r.size(); i++)
        printf("row %d\n", r[i]);
    for(int i = 0; i < c.size(); i++)
        printf("col %d\n", c[i]);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值