Basic Wave Theory by Ib Bang

Basic Wave Theory

by

Ib Bang.

* * * * *

On the three pages; 'Phase Conjugation', Holography' and 'Scalar Waves', some common concepts are used, all related to wave movements. Instead of repeating these in three places, some of these common concepts are presented here.

^
PHASE RELATIONSHIPS:
Wave movements are described by means of sine curves.
A sine curve is in reality a description of a circle, and wave movements can be considered and calculated as circular movements. A sine curve is because of that descriped like a circle through 360o as shown in fig. 1.
At the figure the amplitude is measured upwards and the time from left to right.

Fig. 1.
A sine curve represents a circle and like that it is divided into 360o

* * * * *
If two sine curves with the same frequency occurs, then the distance between for instance their tops will represent a certain part of a complete cycle, this difference is called a phase difference, and is measured in degrees.
Because the phase difference is expressed by the difference of the 'starting points' of the two frequencies related to the complete cycle it is self evident, that the two frequencies must be the same, otherwise it will not be possible to tell which frequency to use as a reference.
At the first picture of fig. 2 the two curves cross the reference line in a positive direction at the same time. Thus the two curves are in phase, or their phase difference is 0o.
At the second picture the red curve crosses the reference line in a positive direction at 0o, and the blue one crosses the same reference line, also in a positive direction at 90o. Thus the red curve is leading the blue one by 90o, or the blue one is lagging the red one by 90o.

Fig. 2.
The difference between two waves with the same frequency has a certain phase relationship which is expressed in degrees.
At the third picture the two curves cross the reference line simultaneously, but into opposite directions. This is called that they are in opposite or counter phase. Or expressed in a different way then the blue curve crosses the reference line in a positive direction 180o after the red one. Thus there is a phase difference of 180o.
Finally the blue curve crosses the reference line in a positive direction 270o after the red one, or 90o before the red one. In other words, the blue curve leads the red one by 90o, or the red one lags the blue by 90o.

* * * * *
If the two curves represent the same unit, for instance voltages, then they will create a third sine curve, the individual points of which represent the sum of the instant values of the two curves. If the value of the red curve at a certain moment is 4 volts, and the value of the blue curve at the same moment is 3 volts, then the total voltage will be 7 volts at that moment. On fig. 3 fig. 2 is repeated, but with the total value expressed as a green sine curve.
Fig.3.
The sum of the red and the blue curve is showh by the green curve.
An important thing is made clear by the above mentioned curves; the amplitude of the sum is greatest when the two basic curves are in phase and least, when these are in opposite phase. The amplitude of the sum is reduced more and more the greater the phase difference is.

* * * * *

^
STANDING WAVES:
Until now we have been looking at how two waves moving in the same direction add forming a third wave.
Now we will look upon how waves of the same frequency moving in opposite directions behave.
As shown at fig. 3, then the two waves can be added forming a third one.
But where the two waves in fig. 3 moved in the same direction, why the sum wave also moved in the same direction, then it is a different matter with waves moving in opposite directions. But we still consider waves of the same frequency.
Because the waves moves towards each other, the phase will change continuously, but this in such a way, that the sum all the time will have its maximums and minimums in the same place, and will cross the reference line in the same points.
Thus where the resulting wave before followed the original waves, then it will now be 'lapping' to and fro in the same places. This is called standing waves and is shown in fig. 4.

Fig.4.
Standing waves. The red wave is moving towards the right and the blue one is moving towards the left, whereas their resultant wave, the green one does not move. Its amplitude is changing, but all the time it crosses the reference line in the same points. This is a standing wave.
If we imagine it to be a couple of wires between which a standing wave signal appears as a voltage, and we want to measure that voltage, then the result will differ according to the points, between which we measure. If we measure in the points where the wave crosses the wires, at point '0' at fig 5., then we will measure nothing, because the voltage there will always be zero volts. Equidistant between these points at point 'm' at fig. 5, we will measure the maximum value being the double of each of the single voltages. In any other random point we will measure a value in between these two values. As is apparent from the figure, then the zero-value is the best defined point of the curve. If we find two adjacent zero-points and measure the distance between these, then we will have half the wavelength.

Fig. 5.
Measurements at different points of the wire will give different results.
* * * * *

^
TYPES OF WAVES
The waves may oscillate in different ways. There are longitudinal and transverse oscillations.
When the oscillations take place in only one medium, for instance sound waves in the air, then you will have longitudinal oscillations as shown in fig. 6. The oscillations move from the left to the right, but each particle only moves a very little distance parallel to the wave motion. As the direction of the movements of the particles is parallel to that of the wave, they are called longitudinal oscillations.

Fig. 6.
You get longitudinal oscillations when the direction of movement of each particle is parallel to that of the wave.
If one media oscillates in another one, as for instance radio waves, where electrons move in the ether, we will get transverse oscillations, i. e. waves where each particle moves perpendicular to the direction of the wave.
Fig. 7.
You get transverse oscillations when the direction of movement of each particle is perpendicular to that of the wave.
Transverse oscillations can be expressed by means of two longitudinal oscillations as shown in fig. 8. If you watch the purple particle, then you will notice, that apart from moving left to right, then the two longitudinal waves are also phase shifted 180o, creating an up/down movement, too. As the purple particle is a part of both, its movements are circular. It is not because moves perpendicular to any of the waves, but exactly because it is part of two waves; one going up/down, and one going left/right, then the particle itself must also move both up/down and left/right.

Fig. 8.
Transverse oscillations can be expressed by means of two longitudinal oscillations.
A closer view at fig. 8 reveals, that the concentrations and dilutions move from the left towards the right, but not up and down. Vertically you see no contrations on the middle. Vertically, thus, it corresponds to a standing wave with the zero-point at the middle. If we watch the wave perpendicularly to the longitudinal oscillations, then we will get it symbolized as in fig. 9 as a seesaw, which simultaneously explains the transverse movements of the transverse oscillating particle.

Fig. 9.
The phaseshift of the two longitudinal oscillations makes it look like a seesaw when viewed along the direction of movement.
* * * * *
http://www.futureworld.dk/tech/ether/ether.htm

© Copyright 2000, Ib Bang - All Rights Reserved.

Copyright means the right to copy. Thus you are encouraged to copy whatever you might want to.


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值