Java实现矩阵

Java代码:


import java.util.Random;   
 
//矩阵类   
public class Matrix {
    private int[][] matrix;   
    Random random = new Random();   
 
    // 构造方法   
    public Matrix() {   
        matrix = new int[3][3];   
    }   
 
    public Matrix(int n) {   
        matrix = new int[n][n];     
        for (int i = 0; i < n; i++) {   
            for (int j = 0; j < n; j++) {   
                matrix[i][j] = random.nextInt(100);   
            }   
        }   
    }   
 
    public Matrix(int n, int m) {   
        matrix = new int[n][m];     
        for (int i = 0; i < n; i++) {   
            for (int j = 0; j < m; j++) {   
                matrix[i][j] = random.nextInt(100);   
            }   
        }   
    }   
 
    public int[][] getMatrix() {   
        return matrix;   
    }   
 
    // 输出矩阵中所有元素   
    public void output() {   
        for (int i = 0; i < matrix.length; i++) {   
            for (int j = 0; j < matrix[i].length; j++) {   
                System.out.print(matrix[i][j] + "\t");   
            }   
            System.out.println();   
        }   
    }   
 
    // 求一个矩阵的转置矩阵   
    public Matrix transpose() {
        int n = matrix.length;   
        int m = matrix[0].length;
        Matrix transMatrix = new Matrix(n, m);   
 
        for (int i = 0; i < n; i++) {   
            for (int j = 0; j < m; j++) {   
                transMatrix.getMatrix()[i][j] = matrix[j][i];   
            }   
        }   
        return transMatrix;   
    }   
 
    // 判断一个矩阵是否为上三角矩阵   
    public boolean isTriangular() {
        // 用相反的思路进行判断   
        for (int i = 1; i < matrix.length; i++) {   
            for (int j = 0; j < i; j++) {   
                if (matrix[i][j] != 0) {   
                    return false;   
                }   
            }   
        }   
        return true;   
    }   
 
    // 判断是否为对称矩阵   
    public boolean isSymmetry() {
        for (int i = 1; i < matrix.length; i++) {   
            for (int j = 0; j < matrix[i].length; j++) {   
                if (matrix[i][j] != matrix[j][i]) {   
                    return false;   
                }   
            }   
        }   
        return true;   
    }   
 
    // 矩阵的相加   
    public void add(Matrix b) {
        int[][] matrixOfB = b.getMatrix();
        int n = matrixOfB.length;   
        int m = matrixOfB[0].length;   
 
        if (n != matrix.length || m != matrix[0].length) {   
            System.out.println("矩阵的长度不一致,不能相加");   
        } else {   
            for (int i = 0; i < n; i++) {   
                for (int j = 0; j < m; j++) {   
                    matrix[i][j] += matrixOfB[i][j];   
                }   
            }
        }   
    }   
 
    public static void main(String[] args) {
        //测试   
        Matrix test1 = new Matrix(4);   
 
        System.out.println("原始矩阵");   
        test1.output();   
 
        Matrix transMatrix = test1.transpose();   
 
        System.out.println("转置矩阵");   
        transMatrix.output();   
 
        System.out.println("是否是上三角矩阵");   
        System.out.println(test1.isTriangular());   
 
        System.out.println("是否是对称矩阵");   
        System.out.println(test1.isSymmetry());   
 
        System.out.println("----------------------");   
 
        Matrix test2 = new Matrix();   
 
        test2.output();   
 
        System.out.println(test2.isTriangular());   
        System.out.println(test2.isSymmetry());   
           
        System.out.println("----------------------");   
           
        Matrix test3 = new Matrix(4);   
        Matrix test4 = new Matrix(4);   
           
        test3.add(test2);   
           
        System.out.println("矩阵1");   
        test3.output();   
        System.out.println("矩阵2");   
        test4.output();   
           
        System.out.println("矩阵相加");   
        test3.add(test4);   
           
        test3.output();   
    }   

}  


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值