leetcode-398-Random Pick Index

Error:
cannot done. Use a sampling call Reservoir sampling. When it meet a target, directly replace with n%, it has the same probability as the united probability.

Prove:
When we have a size n array and meet (n + 1)th element, so that this element has n / (n + 1) probability to replace the old array and 1 - n / (n + 1) probability to discard the element.

For the old element in the array, it has (1 - n / (n + 1)) + ((n / (n + 1)) * ((n - 1) / n)) = n / (n + 1)

So that the old and new element always keep the same probability for the replacement.

Or check this video

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值