背景
在民用航空领域,飞机的运行成本是非常高的,其中燃油成本一直占据着非常高的比例,约占运行总成本的20%,如果能够有一套行之有效的燃油预测系统来对每一趟航班的加油和用油进行精准指导,则能够有效的来保障飞行安全和降本增效,从而提升运营收益。然而,航空燃油有其特殊性和复杂性,需要做好燃油预测系统方案的顶层设计和细节把控。
航空燃油特殊性
(1)油品的特殊性
相比日常生活中在加油站加的油,航空燃油的纯净度、燃烧速度、热值和抗暴能力都要高级的多,因此,常有人比喻说:“把普通汽油看作白开水,航空燃油就相当我们饮料中的脉动、宝矿力、东鹏特饮等等之类的功能性饮料”。就不同的飞机发动机来说,航空燃油主要包含航空汽油和航空煤油两大类,其中
航空汽油主要用在搭载活塞式航空发动机的机型上,如直升机、通讯机、气象机等,这类机型的发动机与一般汽车发动机工作原理相同,只是功率大一些,自重轻一些。
航空煤油主要用在装备涡喷和涡扇发动机的机型,如民航客机和喷气式战机等。由于这类机型经常要在万米以上高空飞行,发动机必须适应高空缺氧、气温气压较低的恶劣环境,所以对燃料的黏度和流动性要求非常高,航空煤油因其热值高、低温流动性好、燃烧性能高的特点,成为了最合适的燃料。
(2)航空燃油的复杂性
航空燃油的复杂性主要体现在用油过程的复杂性,飞机从廊桥滑出、起飞,爬升、巡航、下降、着陆,滑入廊桥,每个过程都要用油,都可以安其名目,飞机在加油的时候又需要考虑各种情况,加注航段耗油,应急油量,备降油量,最终储备油量,额外燃油等,具体的
航段油量就是整个航班中飞机从起飞、爬升、巡航、下降、降落所需要的燃油量。
应急油量是为了预防风暴雷雨,空中管制等一些紧急情况而加注的燃油量。
备降油量为的是让防止飞机不能正常降落在目的机场进而飞往其他备降机场,就需要从目的机场复飞、爬升、巡航到降落备降机场整个过程所需的油量。
最终储备油量是在“航段油量”已经用完了,“备降油量”也用的差不多了,而备降机场还不具备正常降落条件需要在机场上方盘旋等待一定时间所需加注的油量。
额外燃油是指飞行员根据具体情况而选择加注的燃油,也叫决策性燃油。
在弄明白飞机在各个环节耗油情况有助于拎清哪些环节哪些名目的燃油是可控的,哪些是不可控的,以及可控的大致难易程度。
设计方案
为每一躺航班飞行精准预测出其所需油量,需要结合行业的实践经验和新兴的大数据技术,通过机器学习和深度学习手段对历史的燃油,天气,航班等数据进行整理和挖掘,找出规律,总结成数学模型,并将其应用在未来的航班上。我们下面将围绕业务,数据,技术三方面进行论述和推演
业务
航空公司都有自己的燃油计划系统,一般会在计划起飞前3小时综合航段里程远近情况,起飞机场天气情况,降落机场的天气情况,航路天气情况,客舱预售票情况,腹舱接收货邮情况来给飞机加注燃油,给飞机加油要在满足起飞机场的最大起飞重量,目的机场的最大降落重量的前提下把乘客安全送达目的机场,可以把燃油看成飞机飞行的晴雨表。
数据
民航业的数据如飞机加注的燃油一样,流通在机票的售卖和飞机飞行的全过程,时时刻刻都会生成和被记录,而与航空燃油密切相关的数据主要有航班数据,旅客货邮数据,天气数据这三大块,每一块又细分很多要素,具体的可以看下面这张图
技术
技术就是用各种手段让数据来说明蕴藏在业务中的问题,当前流行的做法是对业务逻辑建立科学的数学模型,再利用机器学习和深度学习技术对数据流进行挖掘,总结出其中的规律和模式,并将这种模式应用在未来的燃油业务上面,对其进行预测和指导调整。针对燃油预测就是通过历史的燃油,天气,航班数据找出这些因素与燃油之间的关联关系,而在预测的时候又可以天气预报系统,航班计划系统输入未来的这些因素,使得燃油未来的预测值得以计算和预测,可以分为离线训练和在线预测两个模块。
这次航空燃油预测的初步探讨就到这里。