poj1511(第一次用数组模拟邻接表…

题意:求出所有点到源点来回的最短距离 。

解法:先求出源点到其他所有点的最短距离 , 再把所有边反向 , 再求源点到所有点的距离 。

由于这题的数据量太大 , 所以只能用数组来模拟邻接表 , 如果用vector会超内存 。

还要注意一点 , 一定要用long long
代码:
#include
#include
#include
#include
#include
using namespace std;

#define MAXN  1000010
#define INF  0xFFFFFFFF
struct edge
{
      int  to , d , next;
}edges1[2][MAXN];
long long d1[MAXN] , first[2][MAXN];
long long  n , m , sum = 0 , vis[MAXN] ;

void spfa(int s)
{
      int i , x;
      queueq;
      for(i = 1; i <= n; i++)  d1[i] = INF;
      d1[1] = 0;
      memset(vis , 0 , sizeof(vis));
      q.push(1);
      vis[1] = 1;
      edge e;
      while(!q.empty())
      {
            int u = q.front(); q.pop();
            vis[u] = 0;
            x = first[s][u];
            if(x == -1)  continue ;
            while(x != -1)
            {
                  e = edges1[s][x];
                  if(d1[e.to] > d1[u] + e.d)
                  {
                        d1[e.to] = d1[u] + e.d ;
                        if(!vis[e.to])  {vis[e.to] = 1; q.push(e.to);}
                  }
                  x = edges1[s][x].next ;
            }
      }
      for(i = 1; i <= n; i++)
            sum += d1[i];
}

int main()
{
    // cout<<INF<<endl;
      int t;
      cin>>t;
      while(t--)
      {
            scanf("%lld %lld" , &n , &m);
            int i , x , y , z;
            for(i = 0; i <= n; i++)
                  first[0][i] = first[1][i] = -1;
            for(i = 0 ; i < m; i++)
            {
                  scanf("%d %d %d" , &x , &y , &z);
                  edges1[0][i].to = y , edges1[0][i].d = z;
                  edges1[0][i].next = first[0][x] ;
                  first[0][x] = i;

                  edges1[1][i].to = x; edges1[1][i].d= z;
                  edges1[1][i].next = first[1][y];
                  first[1][y] = i;
                  //cout<<i<<endl;
            }
            sum = 0;
            spfa(0);
            spfa(1);
            printf("%lld\n" , sum);
      }
      return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值