题意:求出所有点到源点来回的最短距离 。
解法:先求出源点到其他所有点的最短距离 , 再把所有边反向 , 再求源点到所有点的距离 。
由于这题的数据量太大 , 所以只能用数组来模拟邻接表 , 如果用vector会超内存 。
还要注意一点 , 一定要用long long
代码:
#include
#include
#include
#include
#include
using namespace std;
#define MAXN 1000010
#define INF 0xFFFFFFFF
struct edge
{
int
to , d , next;
}edges1[2][MAXN];
long long d1[MAXN] , first[2][MAXN];
long long n , m , sum = 0 , vis[MAXN] ;
void spfa(int s)
{
int i , x;
queueq;
for(i = 1; i <= n; i++)
d1[i] = INF;
d1[1] = 0;
memset(vis , 0 , sizeof(vis));
q.push(1);
vis[1] = 1;
edge e;
while(!q.empty())
{
int u = q.front(); q.pop();
vis[u] = 0;
x = first[s][u];
if(x == -1)
continue ;
while(x != -1)
{
e = edges1[s][x];
if(d1[e.to] > d1[u] + e.d)
{
d1[e.to] = d1[u] + e.d ;
if(!vis[e.to])
{vis[e.to] = 1; q.push(e.to);}
}
x = edges1[s][x].next ;
}
}
for(i = 1; i <= n; i++)
sum += d1[i];
}
int main()
{
// cout<<INF<<endl;
int t;
cin>>t;
while(t--)
{
scanf("%lld %lld" , &n , &m);
int i , x , y , z;
for(i = 0; i <= n; i++)
first[0][i] = first[1][i] = -1;
for(i = 0 ; i < m; i++)
{
scanf("%d %d %d" , &x , &y , &z);
edges1[0][i].to = y , edges1[0][i].d = z;
edges1[0][i].next = first[0][x] ;
first[0][x] = i;
edges1[1][i].to = x; edges1[1][i].d= z;
edges1[1][i].next = first[1][y];
first[1][y] = i;
//cout<<i<<endl;
}
sum = 0;
spfa(0);
spfa(1);
printf("%lld\n" , sum);
}
return 0;
}
解法:先求出源点到其他所有点的最短距离 , 再把所有边反向 , 再求源点到所有点的距离 。
由于这题的数据量太大 , 所以只能用数组来模拟邻接表 , 如果用vector会超内存 。
还要注意一点 , 一定要用long long
代码:
#include
#include
#include
#include
#include
using namespace std;
#define MAXN
#define INF
struct edge
{
}edges1[2][MAXN];
long long d1[MAXN] , first[2][MAXN];
long long
void spfa(int s)
{
}
int main()
{
}