N-1位小姐姐来自除长春之外N-1座不同的城市,加上长春,一共N座城市。一共有M条单向道路连接着这N座城市。询问每个小姐姐从家中来到长春,再从长春回到各自家中的最短路径和是多少。
Input
输入由T个样例组成。输入的第一行只包含一个正整数T。
接下来是N和M,1 <= N,M <= 1000000,表示N个点和连接N个点的M条边。
然后有M行,每行包括三个值U,V,W,表示从城市U到城市V有一条单向道路,路程为W。
长春的编号是1,其余的城市编号为2…N-1。
Output
对于每个案例,打印一行,表示小姐姐们从家中来到长春,再从长春回到各自家中的最短路径和是多少。(你可以假设答案不会是无限大,且答案在long long范围内)
Sample Input
2
2 2
1 2 13
2 1 33
4 6
1 2 10
2 1 60
1 3 20
3 4 10
2 4 5
4 1 50
Sample Output
46
210
题目大意:给出n个点和n条有向边,求所有点到源点1的来回最短路之和
这个数据范围太大,不能用floyd,dijstra,bellman-ford这些算法,用spfa。
代码:
#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<queue>
using namespace std;
const int inf=0x3f3f3f3f;
const int maxn = 1000005;
int dis[maxn];
int vis[maxn];
int edgehead[maxn];
int a[maxn][3];
struct node{
int v,w,next;
}edge[maxn];
int start=1;
int k,n,m;
long long sum;
void addedge(int u,int v,int w)
{
edge[k].v=v;
edge[k].w=w;
edge[k].next=edgehead[u];
edgehead[u]=k++;
}
void init()
{
memset(dis,inf,sizeof(dis));
memset(vis,0,sizeof(vis));
memset(edgehead,0,sizeof(edgehead));
memset(edge,0,sizeof(edge));
dis[start]=0;
k=1;
}
void spfa()
{
queue<int>q;
q.push(start);
vis[start]=1;
while(!q.empty())
{
int now=q.front();
q.pop();
vis[now]=0;
for(int i=edgehead[now];i;i=edge[i].next)
{
int v=edge[i].v;
int w=edge[i].w;
if(dis[v]>dis[now]+w)
{
dis[v]=dis[now]+w;
if(!vis[v])
{
q.push(v);
vis[v]=1;
}
}
}
}
for(int i=1;i<=n;i++)
{
sum+=dis[i];
}
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&m);
for(int i=0; i<m; i++)
scanf("%d%d%d",a[i],a[i]+1,a[i]+2);
sum=0;
init();
for(int i=0; i<m; i++)
addedge(a[i][0],a[i][1],a[i][2]);
spfa();
init();
for(int i=0; i<m; i++)
addedge(a[i][1],a[i][0],a[i][2]);
spfa();
printf("%lld\n",sum);
}
return 0;
}