Machine Learning
文章平均质量分 92
Zerg Wang
这个作者很懒,什么都没留下…
展开
-
论文笔记:AutoAugment
第二次PaperReading,决定读一下自动数据增强领域的开山鼻祖——AutoAugment: Learning Augmentation Policies from Data增强算法细节增强效果参考资料https://arxiv.org/abs/1805.09501v1...原创 2020-03-08 01:45:26 · 4745 阅读 · 11 评论 -
代码解读:Fast AutoAugment
官方代码地址:https://github.com/kakaobrain/fast-autoaugmentFast AutoAugment(以下简称为FAA)的代码中用了很多作者自己编写的python库,简单看了看,对这些库的使用方法做个笔记。Package:pystopwatch2一个通过标签(tag)管理的计时器,使用方法如下:from pystopwatch2 im...原创 2019-11-26 16:52:34 · 3571 阅读 · 4 评论 -
论文笔记:Fixing the train-test resolution discrepancy
地址:https://arxiv.org/pdf/1711.08561.pdf原创 2020-06-07 16:25:59 · 2596 阅读 · 1 评论 -
论文笔记:RandAugment
前提反直觉更大的数据集需要更强的数据增强小任务上找到的策略并不适用于大数据集原创 2020-04-13 16:47:08 · 9532 阅读 · 0 评论 -
论文笔记:Fast AutoAugment
写在前面第一次完整地读完一篇英文论文,上来就搞得那么硬核其实我也不想……(毕竟要做Paper Reading汇报)本文所写仅为自己的理解(只求理解,所以可能会缺乏专业性……),可能有不少错漏之处,此外现在对贝叶斯优化那块还不是太清楚……如有错误请各位大佬指出,感激不尽~背景数据增强是一种较为常用的可提高模型性能的技术,通过对数据集中的图片进行旋转、对称、颜色变换等操作,提升数...原创 2019-09-15 02:57:51 · 4687 阅读 · 0 评论 -
论文笔记:Online Hyper-parameter Learning for Auto-Augmentation Strategy
背景及方法简介数据增强是对抗模型过拟合的一个较为有效的方法,但增强策略的设计非常依赖专家的经验,而且需要极大的工作量。2018年,自动数据增强应运而生。自动数据增强使用……然而,即使Autoaugment可以有效对抗过拟合,提升模型精度,但该方法需要极大的计算量,效率较低。对此,作者提出了自己的方法:OHL-Auto-Aug并总结其三大贡献:1.2.3....原创 2020-08-23 03:41:23 · 611 阅读 · 0 评论 -
论文笔记:基于深度学习的遥感影像变化检测综述
论文主要信息标题:Deep learning for change detection in remote sensing images: comprehensive review and meta-analysis原文地址:https://arxiv.org/abs/2006.05612v1文章组织架构文章主要分成以下几个部分:首先介绍了常用的深度学习的变化检测方法及其技术基础;其次展示了对于变化检测方法的元分析的细节;再次概述了已有的基于深度学习的遥感影像变化检测方法;在原创 2021-08-24 23:01:40 · 10168 阅读 · 1 评论 -
论文笔记:Image Dataset Classification Difficulty Estimation
第三次Paper Reading~原创 2020-04-26 17:46:09 · 726 阅读 · 0 评论 -
关于数据集和模型的一些笔记
常用数据集简介CIFAR(Canadian Institute For Advanced Research)下载地址:https://www.cs.toronto.edu/~kriz/cifar.htmlCIFAR10:分类数据集,10类,每类6000张,分辨率为32×32×3。CIFAR100:分类数据集,20个大类,每个大类下有5小类,共100类,每类600张(其中,训练用数据...原创 2020-04-01 16:54:25 · 3819 阅读 · 2 评论 -
CS231n学习#2:最优化与反向传播
1.最优化最优化的过程就是不断更改W的参数使目标函数更小的过程,换句话说,对于公式,我们的目标就是找到一个能使Loss取到最小值的W。那应该如何找到这个W呢?算法一:随机生成多个W,选择Loss最小的,这个方法简单易行,但效率过于低下。算法二:对于某个随机生成W,每次随机生成一个微小值,当的Loss更小时更新W,虽然比算法一好,但效率还是太低。算法三:跟随梯度。实际上可以通...原创 2019-02-01 13:28:21 · 440 阅读 · 0 评论 -
CS231n学习#1:KNN与线性分类
1.KNNPS:文中所述的“label”、“标签”、“类别”是指同一个意思。本文所述的图像识别,是指通过训练机器,使其可以判断出给定照片呈现的是什么内容。实现此功能一般需要两个步骤:def train(images,labels) ''' 训练出可以对图像进行分类的模型 ''' return modeldef predict(model...原创 2019-01-31 23:36:05 · 518 阅读 · 0 评论 -
深度学习中的模型评判指标
深度学习中的任务一般分为目标检测和语义分割: 此外,可能还会有更加简单的分类任务,例如文字识别。(当然还有极为复杂的实例分割,此处暂不讨论)针对这三种任务,指标也会略有不同。接下来会从最简单的分类任务入手,对这些指标进行解释:1.分类任务中的指标ConfusionMatrix(混淆矩阵)假设现在有一个分类任务,要判断图中物体是...原创 2019-03-18 21:54:48 · 4198 阅读 · 0 评论 -
深度学习环境配置
换源Windows下的pip换源:假如我的pip位置是:(tensorflow) C:\Users\Administrator>那就在该文件夹下新建文件夹pip,在该文件夹中新建pip.ini,内容为:[global]index-url = https://pypi.tuna.tsinghua.edu.cn/simpleurl后面填的就是国内地址(我这里用的是清...原创 2019-03-13 20:25:51 · 714 阅读 · 0 评论