数字图像处理
普通网友
这个作者很懒,什么都没留下…
展开
-
一般图像检索过程
一般图像检索过程:创建阶段:图像信息收集—>图像信息整理—>图像信息索引—>加入数据库使用阶段:检索请求—>图像搜索引擎处理—>特征项匹配—>返回查询结果基于内容与基于文本没有本质区别,只是在特征项提取与匹配算法上会相对复杂。基于文本的图像检索技术:手工对图像进行标记,再利用基于文本的搜索。图像的搜集分类索引工作都由人工实现。关键词检索是其主要手段。最大特点是原创 2006-09-05 14:13:00 · 3044 阅读 · 0 评论 -
几何矩的由来
几何矩是由Hu(Visual pattern recognition by moment invariants)在1962年提出的,图像f(x,y)的(p+q)阶几何矩定义为 Mpq =∫∫(x^p)*(y^q)f(x,y)dxdy(p,q = 0,1,……∞)矩在统计学中被用来反映随机变量的分布情况,推广到力学中,它被用作刻画空间物体的质量分布。同样的道理,如果我们将图像的灰度值看作是转载 2006-09-12 08:59:00 · 3270 阅读 · 0 评论 -
Zernike 矩简介
在模式识别中,一个重要的问题是对目标的方向性变化也能进行识别。Zernike 矩是一组正交矩,具有旋转不变性的特性,即旋转目标并不改变其模值。。由于Zernike 矩可以构造任意高阶矩,所以Zernike 矩的识别效果优于其他方法.Zernike 提出了一组多项式{ V nm ( x , y) } 。这组多项式在单位圆{ x2 + y2 ≤1} 内是正交的,具有如下形式: V nm ( x , y转载 2006-09-12 09:37:00 · 15293 阅读 · 1 评论 -
几何矩的应用
矩是描述图像特征的算子,它在模式识别与图像分析领域中有重要的应用.迄今为止,常见的矩描述子可以分为以下几种:几何矩、正交矩、复数矩和旋转矩.其中几何矩提出的时间最早且形式简单,对它的研究最为充分。几何矩对简单图像有一定的描述能力,他虽然在区分度上不如其他三种矩,但与其他几种算子比较起来,他极其的简单,一般只需用一个数字就可表达。所以,一般我们是用来做大粒度的区分,用来过滤显然不相关的文档。比如在图原创 2006-09-11 09:40:00 · 3044 阅读 · 0 评论 -
Legendre矩简介
他有所有正交矩的优点,但还没找到其他的优点原创 2006-09-13 09:00:00 · 2993 阅读 · 0 评论 -
目标区域的几何形状特征参数概述
通常 目标区域的几何形状特征参数主要有:周长、面积、最长轴、方位角、边界矩阵和形状系数等。- 周长 目标区域的外边界长度。可用其外边界的相邻两像素之间的距离之和表示。- 面积 可用目标区域所包台的像素的个数来表示 当图像进行了标签处理后.面积参数可以很方便地用数点法提取。- 最长轴 目标区域的最大延伸长度.即目标区域的外边界上距离最大的两像索点的连线。若已知目标区域的外边界像索,就可通过不同的两个翻译 2006-09-11 13:17:00 · 3773 阅读 · 0 评论 -
Shape Signature(1)
In general, a shape signature u(t) is any 1D function representing 2D areas or boundaries, it usually uniquely describes a shape. A shape signature usually captures the perceptual feature of the shape转载 2006-09-13 14:21:00 · 2772 阅读 · 0 评论 -
Shape Signature(2)
Cumulative angular function. Intuitively, the tangent angles of the shape boundary indicate the change of angular directions of the shape boundary. The change of angular directions is important to hu转载 2006-09-14 10:05:00 · 2091 阅读 · 0 评论 -
Derivation of Fourier descriptor
For any above derived 1D signature function u(t), its discrete Fourier transform is given byThis results in a set of Fourier coefficients {an}, which is a representation of the shape. Since shapes转载 2006-09-14 13:30:00 · 1986 阅读 · 0 评论