31、3D 形状配准与匹配:从理论到应用

3D 形状配准与匹配:从理论到应用

1. 3D 形状配准基础

在 3D 形状处理中,视图间的成对配准是一项关键技术。通过在后续视图之间进行成对配准,并将视图 N10 与视图 N1 进行配准,可以实现多视图的对齐。这里,未知量的数量为 9p,其中 p 是变换向量的维度(例如,对于四元数,p = 7)。雅可比矩阵的行数由每个成对配准的所有残差向量确定。关键在于,视图 N10 应同时与视图 N9 和视图 N1 进行成对对齐。

1.1 配准方法示例

以下是一些在 3D 形状配准领域的常见方法:
- 基于最小二乘法的点集拟合 :通过最小化两个 3D 点集之间的误差来实现配准。
- 迭代最近点(ICP)算法 :不断迭代更新变换矩阵,使两个点云尽可能对齐。
- 基于特征的配准方法 :提取点云的特征,如关键点、描述符等,然后根据特征匹配进行配准。

2. 3D 形状匹配概述

如今,多媒体信息在我们生活的各个方面都十分常见,3D 信息在娱乐、医学、安全、艺术等领域的重要性也日益凸显。因此,研究如何处理 3D 信息以充分利用其特性变得至关重要。3D 形状匹配主要涉及两个过程:检索和识别。

2.1 形状检索与识别的区别

过程 定义 典型结果
形状识别
先展示下效果 https://pan.quark.cn/s/a4b39357ea24 遗传算法 - 简书 遗传算法的理论是根据达尔文进化论而设计出来的算法: 人类是朝着好的方向(最优解)进化,进化过程中,会自动选择优良基因,淘汰劣等基因。 遗传算法(英语:genetic algorithm (GA) )是计算数学中用于解决最佳化的搜索算法,是进化算法的一种。 进化算法最初是借鉴了进化生物学中的一些现象而发展起来的,这些现象包括遗传、突变、自然选择、杂交等。 搜索算法的共同特征为: 首先组成一组候选解 依据某些适应性条件测算这些候选解的适应度 根据适应度保留某些候选解,放弃其他候选解 对保留的候选解进行某些操作,生成新的候选解 遗传算法流程 遗传算法的一般步骤 my_fitness函数 评估每条染色体所对应个体的适应度 升序排列适应度评估值,选出 前 parent_number 个 个体作为 待选 parent 种群(适应度函数的值越小越好) 从 待选 parent 种群 中随机选择 2 个个体作为父方和母方。 抽取父母双方的染色体,进行交叉,产生 2 个子代。 (交叉概率) 对子代(parent + 生成的 child)的染色体进行变异。 (变异概率) 重复3,4,5步骤,直到新种群(parentnumber + childnumber)的产生。 循环以上步骤直至找到满意的解。 名词解释 交叉概率:两个个体进行交的概率。 例如,交概率为0.8,则80%的“夫妻”会生育后代。 变异概率:所有的基因中发生变异的占总体的比例。 GA函数 适应度函数 适应度函数由解决的问题决定。 举一个平方和的例子。 简单的平方和问题 求函数的最小值,其中每个变量的取值区间都是 [-1, ...
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值