二、计算概率
人们对基础概率的忽视,经常带来现实中决策上的误判。
例如,你在街头看见一个美女貌若天仙,于是你猜:
a、她是一位演员或者模特;
b、她是一位普通的公司职员。
不少人会猜是a,但是该美女是后者的可能性更大,因为公司职员的基数远大于演员。
为什么会出现误判?一个是因为鲜活效应,二是因为忽视基础概率,三是颠倒了因果。
综合以上三点,人类喜欢根据鲜明的特征去套“规律”:
演员通常很美,所以这位如此美的美女大概率是位演员。
再比如你看到一项研究结果表明:四分之三的车祸发生在离家25英里以内的地方。于是有人开始分析,离家近开车更不安全,是不是因为快到家了着急或者放松警惕?
这也是一个基础概率谬误。真相是90%的时间你都在家附近开车,发生车祸的概率当然更大。相比3/4的比例,实际上离家近开车可能更安全。
我还是用那个老掉牙的例子,来描述一下基础概率和相乘关系。
塔勒布在投资研讨会说:“我相信下个星期市场略微上涨的概率很高,上涨概率大概70%。”
但他却大量卖空标准普尔500指数期货,赌市场会下跌。
他的意见是:市场上涨的可能性比较高(我看好后市),但最好是卖空(我看坏结果),因为万一市场下跌,它可能跌幅很大。
分析如下:
-
假使下个星期市场有70%的概率上涨,30%的概率下跌。
-
但是如果上涨只会涨1%,下跌则可能跌10%。
-
未来预期结果是:70%×1%+30%×(-10%)=-2.3%。
-
因此应该赌跌,卖空股票盈利的机会更大。
好几个聪明朋友对我说,这类计算太简单了,初中就学过。但其实并没有。
而且之所以我老拿这个例子说事,是因为塔勒布的故事发生在华尔街,那帮顶尖聪明人也会在这个简单计算上犯糊涂。
姑且用上面这个计算套一下“好运气的公式”:
先看一下天上掉下来的是什么馅饼。
看起来是一个“上涨”馅饼。但是根据公式我们知道,要计算的是乘积,所以对好运气的计算应该是:
乘积的结果就是求面积。下跌的概率更低,但是可能下跌的幅度更大,所以下跌的期望值(红色面积),大于上涨的期望值(绿色面积)。
因为是乘积关系,所以长和宽是可以颠倒的。其隐喻是,哪怕是基础概率小的事情,也可以靠把事情做得更好而扳回来。一些专业领域的小而美的公司的确也是这样做的。
但是,假如二者的基础概率差一百倍,要扳回来的代价就高很多。
为什么如此简单的计算,华尔街最聪明的人都会搞错呢?
因为这里面的计算拐了两道弯,而我们的直觉更加适合解决拐一道弯的问题。
上面说了人类容易因为鲜活效应而忽视基础概率,那么请允许我再拐一道弯:
假如你在街头看见三位貌若天仙的美女在一起走,你认为她们是演员还是普通公司职员呢?
我们的直觉,对于概率问题,通常是两头摇摆的。
再看一道让很多绝顶聪明的人也为难的题目:
某市八年级学生的平均智商是100。为检验当地的教育水平,你随机选择了50名学生接受测试。第一个学生的智商测试得分为150,请判断这50名学生的平均智商。
《思维的发现》
答案难道不应该是平均数100吗?
毕竟那个智商150的孩子只是特例,也许会被得分较低的拉平。
正确答案应该是101。
假如你错了,不必在意。当年这道题曾经考倒了一群精通概率的专家。
看似只是多了个“1”,差别其实很大。背后的有趣逻辑,提醒了我们基础概率与新证据之间的互动关系。