1278. Palindrome Partitioning III

本文介绍了一种优化的字符串分割算法,通过将字符串分为k个非空不相交子串,每个子串为para,计算最少替换次数以实现目标。算法采用动态规划方法,通过逐层递推计算出最优解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这种在计算para时候,还可以优化,进一步压缩时间。

class Solution {
public:
    // 将s分成k个非空不相交子串,每个是para
    // 对s至少替换多少次?返回最小次数。
    
    int func(string s){
        int ii=0;
        int jj=s.size()-1;
        int res = 0;
        while(ii<jj){
            if (s[ii]!=s[jj]){
                res++;
            }
            ii++;
            jj--;
        }
        return res;
    }
    
    int palindromePartition(string s, int k) {
        int row = s.size();
        int col = k+1;
        vector<int> temp(col, 1e9);
        vector<vector<int>> dp(row, temp);
        
        // for j=1
        for(int i=row-1;i>=0;i--){
            string ss = s.substr(i, s.size()-i);
            dp[i][1] = func(ss);
        }
        
        // for j=2,3,4..
        for(int j=2;j<=k;j++){
            for(int i=row-j;i>=0;i--){
                // dp[i][j]
                int res = 1e9;
                for(int kk=i;kk<=row-2;kk++){ // [i,kk]
                    res = min(res, func(s.substr(i, kk-i+1))+dp[kk+1][j-1]);
                }
                dp[i][j] = res;
            }
        }
        
        /*
        // for debug
        for(int i=0;i<row;i++){
            for(int j=0;j<col;j++){
                cout<<dp[i][j]<<"    ";
            }
            cout<<endl;
        }*/
        
        
        return dp[0][col-1];
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值