论文1
Review on forecasting of photovoltaic power generation based on machine learning and metaheuristic techniques
1.简介
(1)背景
光伏发电潜力巨大
PV装机容量逐年大幅提高
PV的生产取决于各种因素,如气候条件、风压、湿度、太阳辐射、环境温度和组件温度
为保证电力系统的可靠性,稳定性和质量,减少电力不确定对电网的影响,需要对太阳能发电输出进行准确,精确的预测。
(2)预测方法
过去,数学模型已被应用于预测PV发电量,分为持久性模型(persistence model)和统计学方法(Statistical method),但此技术通常会产生低精度的预测,并且也不能正确地处理非线性数据。——因此,出现了机器学习(如支持向量机-SVM,人工神经网络-ANN,极限学习机-ELM)和元启发技术,机器学习可处理显示算法无法解决的问题,适合于模式识别,分类,数据挖掘和预测。
(3)主要方法
太阳辐照度预测有三大类方法——统计/数值方法,物理方法和混合或集成方法。
机器学习(ANN,SVM,ELM)属于统计方法分组;物理方法包括(i)数值天气预报(NWP)模式(ii)天空成像模式(iii)卫星成像或遥感成像
统计方法是基于历史数据和从数据中提取信息以预测时间序列的能力;物理方法是基于大气中太阳辐射的物理状态和动态运动之间的相互作用。
- 统计/数值方法适于短期预测,在1至6小时的时间范围内可得到较好的预测结果;
- 而对于中长期预测,物理方法更具吸引力——NWP通常用于提前15天的预报,有全球,部分地球,局部区域三种模式;天空成像模式用于短期全球太阳辐射(GHI)预报(6h),优点是拥有完整的气象信息,可对太阳能发电设施区域的未来云型进行极短期的预报;遥感或卫星成像模型不需要地面传感器来预测太阳辐照。
而元启发方法则结合了机器学习和物理方法,提供了更准确的中长期太阳预报(24h)。
-
自适应差分进化极限学习机模型的相对绝对平均误差(rMAE)和相对均方根误差(rRMSE)分别为2.6%和2.3%(布里斯班)和0.8和0.7%(汤斯维尔),优于所有9个基准模型,使用了遥感MODIS卫星进行长期的太阳辐射度预测。
-
采用支持向量回归技术(SVR),结合PV功率测量,NWPs和云运动向量辐照预报,对PV功率进行了15分钟至5小时的预报。SVR组合模型优于单个模型。SVR相比未使用线性回归的物理建模方法,预测结果略优;而相比应用线性回归的物理模型,预测结果略差。SVR模型与PV模拟模型的统计增强模型精度相同。
-
使用意大利米兰现有电厂的真实数据,比较提前一天预PV输出功率的物理方法和混合方法,结合了晴空太阳辐射的ANN提供了最好的预测结果(NMAE 5.6%),相比之下两个分别使用3参数和5参数的确定性模型NMAE参数分别为8.5%和9.0%。
-
与多元统计学习方法相结合的气象研究和预报模型在提前一天的每小时预测中优于智能持续性预测,气候学预报和全球预报系统(GFS),其均方根误差(RMSE)比智能持续性预测降低了23%。
与其他方法相比,机器学习和物理方法相结合的元启发技术可以通过减少预测误差(RMSE,平均绝对百分比误差- MAPE,平均绝对误差- MAE)来提供更好的太阳能预测。
机器学习也被广泛应用于风电和电力系统负荷预测。SVM、自适应神经模糊推理系统(ANFIS)和ANN是风力发电预测的常用方法。风电预测是基于风速、空气密度等不同参数,对由于风的不可预测性而产生的间歇性风电进行预测。