[HAOI2006]受欢迎的牛 Tarjan缩点

题目描述
题目

数据结构暂时先告一段落,那些复杂的数据结构对于现在的我来说太麻烦了,写了也没有意义,所以等以后代码力强一点的时候再回去把暂时放弃的数据结构学完

接着进入图论的学习
最短路已经很熟了,就不必再回去学了
而之前只是囫囵吞枣地学了一遍各种Tarjan算法,所以我打算多刷点题巩固一下

这题是关于缩点的问题
强连通视频学习

对本题
如果只存在1个强连通分量,那么所有牛都是受欢迎的
如果存在2个强连通分量,那么入度为0的分量中的牛是受欢迎的
否则没有牛受欢迎

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=10010,M=50010;
int head[N],x[M],y[M],deg[N],n,m,now;
int col[N],cnt[N],dfn[N],low[N],s[N],vis[N],tot,idx,top;
struct E{int to,next;}e[M];
void build(int u,int v){e[++now].to=v;e[now].next=head[u];head[u]=now;}

int read()
{
    int out=0,f=1;char c=getchar();
    while(c > '9' || c < '0') {if(c == '-') f=-1; c=getchar();}
    while(c <= '9' && c >= '0') {out=(out<<1)+(out<<3)+c-'0';c=getchar();}
    return out*f;
}

void tarjan(int u)
{
    low[u]=dfn[u]=++idx;s[++top]=u;vis[u]=1;
    for(int i=head[u];i;i=e[i].next)
    {
        int v=e[i].to;
        if(!dfn[v]) {tarjan(v);low[u]=min(low[v],low[u]);}
        else if(vis[v]) low[u]=min(low[u],dfn[v]);
    }
    if(low[u] == dfn[u])
    {
        tot++;int x=0;
        while(x != u) {x=s[top--];col[x]=tot;cnt[tot]++;vis[x]=0;}
    }
}

void solve()
{
    for(int i=1;i<=n;i++) if(!dfn[i]) tarjan(i);
    for(int i=1;i<=m;i++) if(col[x[i]] != col[y[i]]) deg[col[x[i]]]++;
    int d=0,ans;
    for(int i=1;i<=tot;i++)
        if(!deg[i]) d++,ans=i;
    if(d == 1) printf("%d",cnt[ans]);
    else printf("0");
}

void init()
{
    n=read(),m=read();
    for(int i=1;i<=m;i++){x[i]=read(),y[i]=read();build(x[i],y[i]);}
}

int main()
{
    init();
    solve();
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值