【力扣算法】74-搜索二维矩阵

题目

编写一个高效的算法来判断 m x n 矩阵中,是否存在一个目标值。该矩阵具有如下特性:

每行中的整数从左到右按升序排列。
每行的第一个整数大于前一行的最后一个整数。
示例 1:

输入:
matrix = [
  [1,   3,  5,  7],
  [10, 11, 16, 20],
  [23, 30, 34, 50]
]
target = 3
输出: true

示例 2:

输入:
matrix = [
  [1,   3,  5,  7],
  [10, 11, 16, 20],
  [23, 30, 34, 50]
]
target = 13
输出: false

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/search-a-2d-matrix
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

题解

方法:二分查找

直觉

注意到输入的 m x n 矩阵可以视为长度为 m x n的有序数组。

由于该 虚 数组的序号可以由下式方便地转化为原矩阵中的行和列 (我们当然不会真的创建一个新数组) ,该有序数组非常适合二分查找。

row = idx // n , col = idx % n。

算法

这是一个标准二分查找算法 :

初始化左右序号 left = 0 和 right = m x n - 1。

While left < right :

选取虚数组最中间的序号作为中间序号: pivot_idx = (left + right) / 2。

该序号对应于原矩阵中的 row = pivot_idx // n行 col = pivot_idx % n 列, 由此可以拿到中间元素pivot_element。该元素将虚数组分为两部分。

比较 pivot_element 与 target 以确定在哪一部分进行进一步查找。

实现

class Solution {
  public boolean searchMatrix(int[][] matrix, int target) {
    int m = matrix.length;
    if (m == 0) return false;
    int n = matrix[0].length;

    // 二分查找
    int left = 0, right = m * n - 1;
    int pivotIdx, pivotElement;
    while (left <= right) {
      pivotIdx = (left + right) / 2;
      pivotElement = matrix[pivotIdx / n][pivotIdx % n];
      if (target == pivotElement) return true;
      else {
        if (target < pivotElement) right = pivotIdx - 1;
        else left = pivotIdx + 1;
      }
    }
    return false;
  }
}

复杂度分析

时间复杂度 : 由于是标准的二分查找,时间复杂度为 O ( log ⁡ ( m n ) ) O(\log(m n)) O(log(mn))
空间复杂度 : O(1)。

作者:LeetCode
链接:https://leetcode-cn.com/problems/two-sum/solution/sou-suo-er-wei-ju-zhen-by-leetcode/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

感想

参考240题,可以直接套用240的最优解。因为这一题相当于240的特殊情况:

执行用时 :2 ms, 在所有 Java 提交中击败了49.85%的用户

内存消耗 :38.4 MB, 在所有 Java 提交中击败了91.03%的用户

class Solution {
    public boolean searchMatrix(int[][] matrix, int target) {
        if(matrix==null||matrix.length==0||matrix[0].length==0) return false;
        int x = 0;
        int y = matrix[0].length-1;
        while(x<matrix.length&&y>=0){
            if(target==matrix[x][y]) return true;
            else if(target<matrix[x][y]) y--;
            else x++;
        }
        return false;
    }
}

正因为是特殊情况,所以可以有针对性的优化一下:

执行用时 :1 ms, 在所有 Java 提交中击败了99.41%的用户

内存消耗 :38.8 MB, 在所有 Java 提交中击败了86.70%的用户

class Solution {
    public boolean searchMatrix(int[][] matrix, int target) {
        if(matrix==null||matrix.length==0||matrix[0].length==0) return false;
        int x=0;
        for(; x<matrix.length-1;x++){
            if(matrix[x][0] == target) return true;
            if(matrix[x][0]<target && matrix[x+1][0]>target) break;
            if(matrix[x][0] > target) return false;
        }
        if(Arrays.binarySearch(matrix[x],target)>=0) return true;
        else return false;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值