题目
给定一个二叉树和一个目标和,判断该树中是否存在根节点到叶子节点的路径,这条路径上所有节点值相加等于目标和。
说明: 叶子节点是指没有子节点的节点。
示例:
给定如下二叉树,以及目标和 sum = 22,
5
/ \
4 8
/ / \
11 13 4
/ \ \
7 2 1
返回 true, 因为存在目标和为 22 的根节点到叶子节点的路径 5->4->11->2。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/path-sum
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
题解
二叉树定义
首先,定义一下二叉树的结构 TreeNode。
/* Definition for a binary tree node. */
public class TreeNode {
int val;
TreeNode left;
TreeNode right;
TreeNode(int x) {
val = x;
}
}
方法 1:递归
最直接的方法就是利用递归,遍历整棵树:如果当前节点不是叶子,对它的所有孩子节点,递归调用 hasPathSum 函数,其中 sum 值减去当前节点的权值;如果当前节点是叶子,检查 sum 值是否为 0,也就是是否找到了给定的目标和。
class Solution {
public boolean hasPathSum(TreeNode root, int sum) {
if (root == null)
return false;
sum -= root.val;
if ((root.left == null) && (root.right == null))
return (sum == 0);
return hasPathSum(root.left, sum) || hasPathSum(root.right, sum);
}
}
复杂度分析
时间复杂度:我们访问每个节点一次,时间复杂度为
O
(
N
)
O(N)
O(N) ,其中
N
N
N 是节点个数。
空间复杂度:最坏情况下,整棵树是非平衡的,例如每个节点都只有一个孩子,递归会调用
N
N
N 次(树的高度),因此栈的空间开销是
O
(
N
)
O(N)
O(N) 。但在最好情况下,树是完全平衡的,高度只有
log
(
N
)
\log(N)
log(N),因此在这种情况下空间复杂度只有
O
(
log
(
N
)
)
O(\log(N))
O(log(N)) 。
方法 2:迭代
算法
我们可以用栈将递归转成迭代的形式。深度优先搜索在除了最坏情况下都比广度优先搜索更快。最坏情况是指满足目标和的 root->leaf 路径是最后被考虑的,这种情况下深度优先搜索和广度优先搜索代价是相通的。
利用深度优先策略访问每个节点,同时更新剩余的目标和。
所以我们从包含根节点的栈开始模拟,剩余目标和为 sum - root.val。
然后开始迭代:弹出当前元素,如果当前剩余目标和为 0 并且在叶子节点上返回 True;如果剩余和不为零并且还处在非叶子节点上,将当前节点的所有孩子以及对应的剩余和压入栈中。
class Solution {
public boolean hasPathSum(TreeNode root, int sum) {
if (root == null)
return false;
LinkedList<TreeNode> node_stack = new LinkedList();
LinkedList<Integer> sum_stack = new LinkedList();
node_stack.add(root);
sum_stack.add(sum - root.val);
TreeNode node;
int curr_sum;
while ( !node_stack.isEmpty() ) {
node = node_stack.pollLast();
curr_sum = sum_stack.pollLast();
if ((node.right == null) && (node.left == null) && (curr_sum == 0))
return true;
if (node.right != null) {
node_stack.add(node.right);
sum_stack.add(curr_sum - node.right.val);
}
if (node.left != null) {
node_stack.add(node.left);
sum_stack.add(curr_sum - node.left.val);
}
}
return false;
}
}
复杂度分析
时间复杂度:和递归方法相同是
O
(
N
)
O(N)
O(N)。
空间复杂度:当树不平衡的最坏情况下是
O
(
N
)
O(N)
O(N) 。在最好情况(树是平衡的)下是
O
(
log
N
)
O(\log N)
O(logN) 。
作者:LeetCode
链接:https://leetcode-cn.com/problems/two-sum/solution/lu-jing-zong-he-by-leetcode/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
感想
递归解法
执行用时 :1 ms, 在所有 Java 提交中击败了98.40%的用户
内存消耗 :37.3 MB, 在所有 Java 提交中击败了66.08%的用户
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public boolean hasPathSum(TreeNode root, int sum) {
if(root==null) return false;
if(root.left==null&&root.right==null) return root.val==sum;
if(root.left==null) return hasPathSum(root.right, sum-root.val);
else if(root.right==null) return hasPathSum(root.left,sum-root.val);
else return hasPathSum(root.left,sum-root.val)||hasPathSum(root.right, sum-root.val);
}
}