【力扣算法】112-路径总和

题目

给定一个二叉树和一个目标和,判断该树中是否存在根节点到叶子节点的路径,这条路径上所有节点值相加等于目标和。

说明: 叶子节点是指没有子节点的节点。

示例:
给定如下二叉树,以及目标和 sum = 22,

              5
             / \
            4   8
           /   / \
          11  13  4
         /  \      \
        7    2      1

返回 true, 因为存在目标和为 22 的根节点到叶子节点的路径 5->4->11->2。

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/path-sum
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

题解

二叉树定义

首先,定义一下二叉树的结构 TreeNode。

/* Definition for a binary tree node. */
public class TreeNode {
  int val;
  TreeNode left;
  TreeNode right;

  TreeNode(int x) {
    val = x;
  }
}

方法 1:递归

最直接的方法就是利用递归,遍历整棵树:如果当前节点不是叶子,对它的所有孩子节点,递归调用 hasPathSum 函数,其中 sum 值减去当前节点的权值;如果当前节点是叶子,检查 sum 值是否为 0,也就是是否找到了给定的目标和。

class Solution {
  public boolean hasPathSum(TreeNode root, int sum) {
    if (root == null)
      return false;

    sum -= root.val;
    if ((root.left == null) && (root.right == null))
      return (sum == 0);
    return hasPathSum(root.left, sum) || hasPathSum(root.right, sum);
  }
}

复杂度分析

时间复杂度:我们访问每个节点一次,时间复杂度为 O ( N ) O(N) O(N) ,其中 N N N 是节点个数。
空间复杂度:最坏情况下,整棵树是非平衡的,例如每个节点都只有一个孩子,递归会调用 N N N 次(树的高度),因此栈的空间开销是 O ( N ) O(N) O(N) 。但在最好情况下,树是完全平衡的,高度只有 log ⁡ ( N ) \log(N) log(N),因此在这种情况下空间复杂度只有 O ( log ⁡ ( N ) ) O(\log(N)) O(log(N))

方法 2:迭代

算法

我们可以用栈将递归转成迭代的形式。深度优先搜索在除了最坏情况下都比广度优先搜索更快。最坏情况是指满足目标和的 root->leaf 路径是最后被考虑的,这种情况下深度优先搜索和广度优先搜索代价是相通的。

利用深度优先策略访问每个节点,同时更新剩余的目标和。

所以我们从包含根节点的栈开始模拟,剩余目标和为 sum - root.val。

然后开始迭代:弹出当前元素,如果当前剩余目标和为 0 并且在叶子节点上返回 True;如果剩余和不为零并且还处在非叶子节点上,将当前节点的所有孩子以及对应的剩余和压入栈中。

class Solution {
  public boolean hasPathSum(TreeNode root, int sum) {
    if (root == null)
      return false;

    LinkedList<TreeNode> node_stack = new LinkedList();
    LinkedList<Integer> sum_stack = new LinkedList();
    node_stack.add(root);
    sum_stack.add(sum - root.val);
    
    TreeNode node;
    int curr_sum;
    while ( !node_stack.isEmpty() ) {
      node = node_stack.pollLast();
      curr_sum = sum_stack.pollLast();
      if ((node.right == null) && (node.left == null) && (curr_sum == 0))
        return true;
    
      if (node.right != null) {
        node_stack.add(node.right);
        sum_stack.add(curr_sum - node.right.val);
      }
      if (node.left != null) {
        node_stack.add(node.left);
        sum_stack.add(curr_sum - node.left.val);
      }
    }
    return false;
  }
}

复杂度分析

时间复杂度:和递归方法相同是 O ( N ) O(N) O(N)
空间复杂度:当树不平衡的最坏情况下是 O ( N ) O(N) O(N) 。在最好情况(树是平衡的)下是 O ( log ⁡ N ) O(\log N) O(logN)

作者:LeetCode
链接:https://leetcode-cn.com/problems/two-sum/solution/lu-jing-zong-he-by-leetcode/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

感想

递归解法

执行用时 :1 ms, 在所有 Java 提交中击败了98.40%的用户

内存消耗 :37.3 MB, 在所有 Java 提交中击败了66.08%的用户

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
class Solution {
    public boolean hasPathSum(TreeNode root, int sum) {
        if(root==null) return false;
        if(root.left==null&&root.right==null) return root.val==sum;
        if(root.left==null) return hasPathSum(root.right, sum-root.val);
        else if(root.right==null) return hasPathSum(root.left,sum-root.val);
        else return hasPathSum(root.left,sum-root.val)||hasPathSum(root.right, sum-root.val);
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值