import numpy as np
from keras.datasets import mnist
from keras.utils import np_utils
from keras.models import Sequential
from keras.layers import Dense,Dropout,Convolution2D,MaxPooling2D,Flatten
from keras.optimizers import Adam
#载入数据
(x_train,y_train),(x_test,y_test) = mnist.load_data()
#(60000,28,28)->(60000,28,28,1) 1为图片的深度,黑白为1,彩色为3
#数据的值是0-255的,所以要归一化0-1之间
x_train = x_train.reshape(-1,28,28,1)/255.0
x_test = x_test.reshape(-1,28,28,1)/255.0
#换one-hot格式
y_train = np_utils.to_categorical(y_train,num_classes=10)
y_test = np_utils.to_categorical(y_test,num_classes=10)
#定义顺序模型
model = Sequential()
#第一个卷积层
#input_shape 输入平面
#filters 卷积核/滤波器个数
#kernel_size 卷积窗口大小
#strides 步长
#padding padding方式 same/valid
#activation 激活函数
model.add(Convolution2D(
input_shape = (28,28,1),
filters = 32,
kernel_size = 5,
strides = 1,
padding = 'same',
activation = 'relu'
))
#第一个池化层
model.add(MaxPooling2D(
pool_size = 2,
strides = 2,
padding = 'same',
))
#第二个卷积层
model.add(Convolution2D(64,5,strides=1,padding='same',activation = 'relu'))
#第二个池化层
model.add(MaxPooling2D(2,2,'same'))
#把第二个池化层的输出扁平化为1维
model.add(Flatten())
#第一个全连接层
model.add(Dense(1024,activation = 'relu'))
#Dropout
model.add(Dropout(0.5))
#第二个全连接层
model.add(Dense(10,activation='softmax'))
#定义优化器
adam = Adam(lr=1e-4)
#定义优化器,loss function,训练过程中计算准确率
model.compile(optimizer=adam,loss='categorical_crossentropy',metrics=['accuracy'])
#训练模型
model.fit(x_train,y_train,batch_size=64,epochs=10)
#评估模型
loss,accuracy = model.evaluate(x_test,y_test)
print('test loss',loss)
print('test accuracy',accuracy)
keras基础--8.CNN应用于手写数字识别
最新推荐文章于 2023-06-05 16:09:40 发布