动态规划--LC63不同路径II

在这里插入图片描述
这个题是力扣62不同路径的改进,在路径上多了障碍物需要思考。

class Solution(object):
    def uniquePathsWithObstacles(self, obstacleGrid):
        """
        :type obstacleGrid: List[List[int]]
        :rtype: int
        """
        # 有障碍物,那么有障碍物的位置路径=0
        # 1.dp
        m = len(obstacleGrid)
        n = len(obstacleGrid[0])
        dp = [[0 for i in range(n)] for j in range(m)]
        # 先对第一个点做个判断
        if obstacleGrid[0][0] == 1:
            return 0
        # 初始化
        for i in range(m):
            # 只有无障碍的位置,才可以赋初值=1,如果有障碍,那么这一列后面的值都为0
            if obstacleGrid[i][0] == 0:
                dp[i][0] = 1
            else:
                break
        for j in range(n):
            # 只有无障碍的位置,才可以赋初值=1,如果有障碍,那么这一行后面的值都为0
            if obstacleGrid[0][j] == 0:
                dp[0][j] = 1
            else:
                break

        for i in range(1, m):
            for j in range(1, n):
                if obstacleGrid[i][j] != 1:
                    dp[i][j] = dp[i][j-1] + dp[i-1][j]
        return dp[-1][-1]
class Solution(object):
    def uniquePathsWithObstacles(self, obstacleGrid):
        """
        :type obstacleGrid: List[List[int]]
        :rtype: int
        """
		# 2.方法1的优化,空间复杂度为O(n)
        m = len(obstacleGrid)
        n = len(obstacleGrid[0])
        dp = [0 for _ in range(n)]
        if obstacleGrid[0][0] == 1:
            return 0
        for i in range(n):
            if obstacleGrid[0][i] == 1:
                break
            dp[i] = 1
        for i in range(1, m):
            for j in range(n):
                if obstacleGrid[i][j] == 1:
                    dp[j] = 0
                elif j > 0:
                    dp[j] += dp[j-1]
        return dp[-1]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值