ALE-零学习zero-shot(Label-Embedding for Attribute-Base Classification)

1.文章提出的背景:
DAP有许多缺点:
(1)预测属性可以,预测类别不太行
(2)不能增量学习
(3)无法利用除属性外的信息
*先科普一下什么是DAP
DAP(Direct Attribute Prediction)

在这里插入图片描述

DAP可以理解为一个三层模型:
第一层是原始输入层,例如一张图片,用像素的方式进行描述;
第二层是n维特征空间,每一维代表一个特征;
第三层是输出层,输出模型对输出样本的类别判断。
在第一层和第二层中间,训练n个分类器,用于对一张图片判断是否符合n维特征空间各个维度所对应的特征;
在第二层和第三层间,有一个语料知识库,用于保存n维特征空间和输出y的对应关系。

在这里插入图片描述
2.提出问题:有什么办法可以解决DAP模型的缺点?
3.提出方法:
在这里插入图片描述

(1)将图片映射到特征空间中得到θ(x)&#x

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值