问题描述
将整数n分成k份,且每份不能为空,任意两份不能相同(不考虑顺序)。
例如:n=7,k=3,下面三种分法被认为是相同的。
1,1,5; 1,5,1; 5,1,1;
问有多少种不同的分法。
输入格式
n,k
输出格式
一个整数,即不同的分法
样例输入
7 3
样例输出
4 {四种分法为:1,1,5;1,2,4;1,3,3;2,2,3;}
思路:*
设 f(n,m) 为整数 n 拆分成 m 个数字的方案数.
那么对于每一个情况一定可以分为以下两种情况,且不重不漏。
1.不选 1 的情况
如果不选择 1,我们把 n 拆分成 m 块的情况,可以等价于将每一块都减去1,然后分为m块,即 f(n-m,m)
2.选 1 的情况
那么就是其中一块肯定有一个 1,然后对n-1分成m-1块,即 f(n-1,m-1)。
所以总递推式为 f(n,m)=f(n-m,m)+f(n-1,m-1)
递归结束的条件是
1.n=0 或 n
两种求解办法:dfs和dp动态规划
dfs暴力求解(可能会超时)
//dfs求解
int dfs(int n,int k) {
if (n == 0 || k == 0||n<k) {
return 0;
}
if (n == 1 || n == k) {
return 1;
}
else
{
return dfs(n - k,k) + dfs(n - 1,k - 1);
}
}
int main()
{
int n, k;
cin >> n >> k;
cout << dfs(n, k) << endl;
return 0;
}
dp动态规划求解:
//dp动态规划求解
#include <iostream>
#include<math.h>
#include<memory.h>
using namespace std;
int main()
{
int n, k;
cin >> n >> k;
int dp[250][10];
memset(dp, 0, sizeof(dp));
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= i; j++) {
if (j == 1)
dp[i][j] = 1;
else
dp[i][j] = dp[i - j][j] + dp[i - 1][j - 1];
}
}
cout << dp[n][k] << endl;
return 0;
}