<蓝桥杯>算法训练: 数的划分

问题描述
  将整数n分成k份,且每份不能为空,任意两份不能相同(不考虑顺序)。
  例如:n=7,k=3,下面三种分法被认为是相同的。
  1,1,5; 1,5,1; 5,1,1;
  问有多少种不同的分法。
输入格式
  n,k
输出格式
  一个整数,即不同的分法
样例输入
7 3
样例输出
4 {四种分法为:1,1,5;1,2,4;1,3,3;2,2,3;}

思路:*

设 f(n,m) 为整数 n 拆分成 m 个数字的方案数.
那么对于每一个情况一定可以分为以下两种情况,且不重不漏。
1.不选 1 的情况
如果不选择 1,我们把 n 拆分成 m 块的情况,可以等价于将每一块都减去1,然后分为m块,即 f(n-m,m)
2.选 1 的情况
那么就是其中一块肯定有一个 1,然后对n-1分成m-1块,即 f(n-1,m-1)。

所以总递推式为 f(n,m)=f(n-m,m)+f(n-1,m-1)

递归结束的条件是
1.n=0 或 n

两种求解办法:dfs和dp动态规划

dfs暴力求解(可能会超时)

//dfs求解

int dfs(int n,int k) {
    if (n == 0 || k == 0||n<k) {
        return 0;
    }
    if (n == 1 || n == k) {
        return 1;
    }
    else
    {
        return dfs(n - k,k) + dfs(n - 1,k - 1);
    }
}

int main()
{
    int n, k;
    cin >> n >> k;
    cout << dfs(n, k) << endl;
    return 0;
}

dp动态规划求解:

//dp动态规划求解
#include <iostream>
#include<math.h>
#include<memory.h>
using namespace std;

int main()
{
	int n, k;
	cin >> n >> k;
	int dp[250][10];
	memset(dp, 0, sizeof(dp));

	for (int i = 1; i <= n; i++) {
		for (int j = 1; j <= i; j++) {
			if (j == 1)
				dp[i][j] = 1;
			else
				dp[i][j] = dp[i - j][j] + dp[i - 1][j - 1];
		}
	}

	cout << dp[n][k] << endl;
	return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值