22、定制内容管理系统(CMS)和网络内容管理(WCM)

定制内容管理系统(CMS)和网络内容管理(WCM)

在内容管理系统(CMS)和网络内容管理(WCM)的实际应用中,常常需要根据具体需求对其进行定制。下面将详细介绍相关的定制内容,包括使用条款页面的定制、特色内容的构建以及相关端口的定制等内容。

1. 使用条款页面设置

使用条款页面有默认的组 ID 和文章 ID。若未指定期刊文章,则会使用默认文本。创建文章后,可使用期刊文章 “TERMS - OF - USE”。在 /ext/ext - web/docroot/html/portal/ 文件夹下的 terms_of_use.jsp 文件中,有如下使用上述属性的代码:

<c:when test="<%= (PropsValues.TERMS_OF_USE_JOURNAL_ARTICLE_GROUP_ID 
                   > 0) && Validator.isNotNull
                   (PropsValues.TERMS_OF_USE_JOURNAL_ARTICLE_ID) 
                   %>">
  <liferay-ui:journal-article groupId="<%= PropsValues.TERMS_OF_USE_
                                        JOURNAL_ARTICLE_GROUP_ID %>" 
    articleId="<%= PropsVal
内容概要:本文详细介绍了如何使用Hugging Face Transformers库进行大模型推理,涵盖环境配置、模型下载、缓存管理、离线使用、文本生成、推理pipeline及模型量化技术。重点讲解了使用LLMs进行自回归生成的核心流程,包括token选择策略、生成参数配置(如max_new_tokens、do_sample)、填充方式(左填充的重要性)以及常见陷阱的规避方法。同时深入探讨了多种量化技术(如GPTQ、AWQ、bitsandbytes的4位/8位量化),并通过实例演示了如何加载本地模型、应用聊天模板、结合Flash Attention优化性能,并实现CPU-GPU混合卸载以应对显存不足的问题。; 适合人群:具备Python编程基础深度学习基础知识,熟悉Transformer架构,从事NLP或大模型相关工作的研究人员、工程师技术爱好者;尤其适合需要在资源受限环境下部署大模型的开发者。; 使用场景及目标:①掌握Hugging Face Transformers库的核心API,实现大模型的本地加载与高效推理;②理解避免大模型生成过程中的常见问题(如输出过短、重复生成、填充错误等);③应用量化技术降低大模型内存占用,实现在消费级GPU或CPU上的部署;④构建支持批量处理多模态任务的推理流水线。; 阅读建议:此资源理论与实践紧密结合,建议读者边阅读边动手实践,复现文中的代码示例,并尝试在不同模型硬件环境下进行调优。重点关注生成配置、量化参数设备映射策略,结合具体应用场景灵活调整。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值