引入所需的包
from scipy import stats
import numpy as np
- 1
- 2
注:ttest_1samp, ttest_ind, ttest_rel均进行双侧检验
H0:μ=μ0H0:μ=μ0
单样本T检验-ttest_1samp
生成50行x2列的数据
np.random.seed(7654567) # 保证每次运行都会得到相同结果
# 均值为5,方差为10
rvs = stats.norm.rvs(loc=5, scale=10, size=(50,2))
- 1
- 2
- 3
检验两列数的均值与1和2的差异是否显著
stats.ttest_1samp(rvs, [1, 2])
- 1
返回结果:
Ttest_1sampResult(statistic=array([ 2.0801775 , 2.44893711]), pvalue=array([ 0.04276084, 0.01795186]))
分别显示两列数的t统计量和p值。由p值分别为0.042和0.018,当p值小于0.05时,认为差异显著,即第一列数的均值不等于1,第二列数的均值不等于2。
不拒绝原假设——均值等于5
stats.ttest_1samp(rvs, 5.0)
- 1
Ttest_1sampResult(statistic=array([-0.68014479, -0.04323899]), pvalue=array([ 0.49961383, 0.96568674]))
拒绝原假设——均值不等于5
stats.ttest_1samp(rvs, 0.0)
- 1
Ttest_1sampResult(statistic=array([ 2.77025808, 4.11038784]), pvalue=array([ 0.00789095, 0.00014999]))
第一列数均值等于5,第二列数均值不等于0
stats.ttest_1samp(rvs,[5.0,0.0])
- 1
Ttest_1sampResult(statistic=array([-0.68014479, 4.11038784]), pvalue=array([ 4.99613833e-01, 1.49986458e-04]))
第一行数均值等于5,第二行数均值不等于0
#axis=0按列运算,axis=1按行运算
stats.ttest_1samp(rvs.T,[5.0,0.0],axis=1)
- 1
- 2
Ttest_1sampResult(statistic=array([-0.68014479, 4.11038784]), pvalue=array([ 4.99613833e-01, 1.49986458e-04]))
将两列数据均值分别与5.0和0.0比较,得到4个t统计量和p值
stats.ttest_1samp(rvs,[[5.0],[0.0]])
- 1
Ttest_1sampResult(statistic=array([[-0.68014479, -0.04323899],
[ 2.77025808, 4.11038784]]), pvalue=array([[ 4.99613833e-01, 9.65686743e-01],
[ 7.89094663e-03, 1.49986458e-04]]))
两独立样本t检验-ttest_ind
ttest_ind官方文档
生成数据
np.random.seed(12345678)
#loc:平均值 scale:方差
rvs1 = stats.norm.rvs(loc=5,scale=10,size=500)
rvs2 = stats.norm.rvs(loc=5,scale=10,size=500)
- 1
- 2
- 3
- 4
当两总体方差相等时,即具有“方差齐性”,可以直接检验
不拒绝原假设——两总体均值相等
stats.ttest_ind(rvs1,rvs2)
- 1
Ttest_indResult(statistic=0.26833823296238857, pvalue=0.78849443369565098)
当不确定两总体方差是否相等时,应先利用levene检验,检验两总体是否具有方差齐性。
stats.levene(rvs1, rvs2)
- 1
LeveneResult(statistic=1.0117186648494396, pvalue=0.31473525853990908)
p值远大于0.05,认为两总体具有方差齐性。
如果两总体不具有方差齐性,需要将equal_val参数设定为“False”。
需注意的情况:
如果两总体具有方差齐性,错将equal_var设为False,p值变大
stats.ttest_ind(rvs1,rvs2, equal_var = False)
- 1
Ttest_indResult(statistic=0.26833823296238857, pvalue=0.78849452749501059)
两总体方差不等时,若没有将equal_var参数设定为False,则函数会默认equal_var为True,这样会低估p值
rvs3 = stats.norm.rvs(loc=5, scale=20, size=500)
stats.ttest_ind(rvs1, rvs3, equal_var = False)
- 1
- 2
正确的p值
Ttest_indResult(statistic=-0.46580283298287956, pvalue=0.64149646246568737)
stats.ttest_ind(rvs1, rvs3)
- 1
被低估的p值
Ttest_indResult(statistic=-0.46580283298287956, pvalue=0.64145827413435608)
当两样本数量不等时,equal_val的变化会导致t统计量变化
rvs1:来自总体——均值5,方差10,样本数500
rvs2:来自总体——均值5,方差20,样本数100
两总体不具有方差齐性,应设定equal_var=False
rvs4 = stats.norm.rvs(loc=5, scale=20, size=100)
stats.ttest_ind(rvs1, rvs4)
- 1
- 2
错误的t统计量
Ttest_indResult(statistic=-0.99882539442782847, pvalue=0.31828327091038783)
stats.ttest_ind(rvs1, rvs4, equal_var = False)
- 1
正确的t统计量
Ttest_indResult(statistic=-0.69712570584654354, pvalue=0.48716927725401871)
不同均值,不同方差,不同样本量的t检验
错误的检验:未将equal_var设定为False
rvs5 = stats.norm.rvs(loc=8, scale=20, size=100)
stats.ttest_ind(rvs1, rvs5)
- 1
- 2
Ttest_indResult(statistic=-1.4679669854490669, pvalue=0.14263895620529113)
正确的检验:
stats.ttest_ind(rvs1, rvs5, equal_var = False)
- 1
Ttest_indResult(statistic=-0.94365973617133081, pvalue=0.34744170334794089)
配对样本t检验
np.random.seed(12345678)
- 1
不拒绝原假设,认为rvs1 与 rvs2 所代表的总体均值相等
rvs1 = stats.norm.rvs(loc=5,scale=10,size=500)
rvs2 = (stats.norm.rvs(loc=5,scale=10,size=500) + stats.norm.rvs(scale=0.2,size=500))
stats.ttest_rel(rvs1,rvs2)
- 1
- 2
- 3
Ttest_relResult(statistic=0.24101764965300979, pvalue=0.80964043445811551)
拒绝原假设,认为rvs1 与 rvs3所代表的总体均值不相等
rvs3 = (stats.norm.rvs(loc=8,scale=10,size=500) + stats.norm.rvs(scale=0.2,size=500))
stats.ttest_rel(rvs1,rvs3)
- 1
- 2
Ttest_relResult(statistic=-3.9995108708727924, pvalue=7.3082402191661285e-05)
转载于:https://blog.csdn.net/m0_37777649/article/details/74938120