- 博客(1)
- 资源 (1)
- 收藏
- 关注
原创 为什么要用交叉熵损失函数
为什么要用交叉熵损失函数在机器学习中用到的最多的是MSE(最小二乘损失函数),这个比较好理解,就是预测值和目标值的欧式距离。而交叉熵是一个信息论的概念,其中p代表目标值,q代表预测值 。x表示单个样本的维度。对于分类问题,加入n个类别,一般情况下输出为n个神经元(只有其中正确属性的一维为1,其他为0),则上式可以简写为:H(p,q)=-log(qi) ,i为其中正确属性维数的置信概率值。如...
2018-12-03 14:30:23 1499 1
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人