有一个二维数组,数组中元素只有 00 和 11。
你最多能将 11 个 00 变成 11,请求出由 11 组成的最大的连通块面积。
如果在二维数组中有两个 11 上下或左右相邻,可以视作它们是连通的。
样例输入:
[[0,1]
,[1,0]]
输出:
3
这个题我是想了蛮久的,但还是最后百分之95的时候超时,发出来纪念一下我的努力吧,或许有大佬路过可以指点一下我。
反面教材:遍历数组,每次遇到0就将他改成1然后计算面积,计算完之后再改回0。保存最大的面积。因为计算之后要改回,所以数组不能变,但是BPS中我要修改1为0作为遍历过的标志(因为我懒得弄个队列去搜索,感觉队列或许还要慢一点)。这样考虑值传递就比较好,但是BPS中如果值传递的话,递归调用会出问题。。所以我再BPS外面套了一个函数。。。它来接收值传递,再在内部调用BPS。
class Solution {
public:
/**
* @param matrix: the matrix for calculation.
* @return: return the max area after operation at most once.
*/
int v[4][2]={{1,0},{-1,0},{0,-1},{0,1}};
void BPS(vector<vector<int>> &matrix,int i,int j,int m,int n,int &area)
{
if(i>=0&&i<m&&j>=0&&j<n&&matrix[i][j])
{
matrix[i][j]=0;
area++;
for(int x=0;x<4;x++)
{
BPS(matrix,i+v[x][0],j+v[x][1],m,n,area);
}
}
}
void function(vector<vector<int>> matrix,int i,int j,int m,int n,int &area)
{
BPS(matrix,i,j,m,n,area);
}
int maxArea(vector<vector<int>> &matrix) {
// write your code here.
int m=matrix.size();
int n=matrix[0].size();
if(m==1&&n==1)
{
return 1;
}
int maxarea=0;
int area=0;
bool key=true;
for(int i=0;i<m;i++)
{
for(int j=0;j<n;j++)
{
if(!matrix[i][j])
{
// vector<vector<int>> temp=matrix;
key=false;
//temp[i][j]=1;
matrix[i][j]=1;
function(matrix,i,j,m,n,area);
maxarea=max(maxarea,area);
area=0;
matrix[i][j]=0;
}
}
}
if(key)
return {m*n};
return maxarea;
}
};
让人变得不幸的百分之95