Numbers 1,2,3…n(each integer from 1 to n once) are written on a board. In one operation you can erase any two numbers a and bfrom the board and write one integer a + b 2 \frac {a+b}{2} 2a+b rounded up instead.
You should perform the given operation n - 1 times and make the resulting number that will be left on the board as small as possible.
For example, if n = 4, the following course of action is optimal:
1.choose 𝑎=4 and 𝑏=2 ,so the new number is 3, and the whiteboard contains [1,3,3];
2.choose 𝑎=3 and 𝑏=3, so the new number is 3, and the whiteboard contains [1,3];
3.choose 𝑎=1 and 𝑏=3, so the new number is 2, and the whiteboard contains [2].
input
The first line contains one integer t ( 1 <=t <= 1000) — the number of the test cases.
The only line of each test case contains one integer n(2 <= n <= 2e5) — the number of integers written on the board initially.
It’s guaranteed that the total sum of n over test cases doesn’t exceed 2e5.
output
For each test case, in the first line, print the minimum possible number left on the board after n - 1 operations. Each of the next n - 1 lines should contain two integers — numbers a and b chosen and erased in each operation.
Description
答案必然是2
#include <iostream>
#include <cstring>
#include <ctime>
#include <algorithm>
using namespace std;
int t,n;
void solve(){
printf("2\n");
int _t;
_t = n;
if(n == 2){
printf("1 2\n");
return;
}
printf("%d %d\n",n-2,n);
printf("%d %d\n",n-1,n-1);
for(int i = n-3;i >= 1;--i){
printf("%d %d\n",i,i + 2);
}
}
int main(){
scanf("%d",&t);
while(t--){
scanf("%d",&n);
solve();
}
return 0;
}