「CF1430C」 Numbers on Whiteboard

2 篇文章 0 订阅
1 篇文章 0 订阅

Numbers 1,2,3…n(each integer from 1 to n once) are written on a board. In one operation you can erase any two numbers a and bfrom the board and write one integer a + b 2 \frac {a+b}{2} 2a+b rounded up instead.

You should perform the given operation n - 1 times and make the resulting number that will be left on the board as small as possible.

For example, if n = 4, the following course of action is optimal:
1.choose 𝑎=4 and 𝑏=2 ,so the new number is 3, and the whiteboard contains [1,3,3];
2.choose 𝑎=3 and 𝑏=3, so the new number is 3, and the whiteboard contains [1,3];
3.choose 𝑎=1 and 𝑏=3, so the new number is 2, and the whiteboard contains [2].

input

The first line contains one integer t ( 1 <=t <= 1000) — the number of the test cases.
The only line of each test case contains one integer n(2 <= n <= 2e5) — the number of integers written on the board initially.
It’s guaranteed that the total sum of n over test cases doesn’t exceed 2e5.

output

For each test case, in the first line, print the minimum possible number left on the board after n - 1 operations. Each of the next n - 1 lines should contain two integers — numbers a and b chosen and erased in each operation.

Description

答案必然是2

#include <iostream>
#include <cstring>
#include <ctime>
#include <algorithm>
using namespace std;
int t,n;
void solve(){
    printf("2\n");
    int _t;
    _t = n;
    if(n == 2){
        printf("1 2\n");
        return;
    }
    printf("%d %d\n",n-2,n);
    printf("%d %d\n",n-1,n-1);
    for(int i = n-3;i >= 1;--i){
        printf("%d %d\n",i,i + 2);
    }
}
int main(){
    scanf("%d",&t);
    while(t--){
        scanf("%d",&n);
        solve();
    }
    return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值