macbook air m1 java开发实测

        通过对macbook air m1cpu版本的实测,下面将具体测试结果分享一下,以便对java程序员入选m1版本的air做出参考;

        选择购买air的原因:购买之前通过查询多方资料,对比了m1版本同配置的air与pro,通过综合分析对于java开发程序员而言air与pro性能差距不大,但是air要比pro便宜近2000大钞,估选择了air。

        入手电脑参数:

        电脑型号:MacBook Air (M1, 2020)
        芯片:Apple M1
        内存:16G
        OS:macOS Big Sur
        硬盘:256Gb
        测试并成功运行/安装的程序/软件包括:
        jdk:openjdk 1.8.0_275(一定得选针对arm的openjdk,才能体现m1的优势,最初本人安装了oracle官网的x86 64位的1.8,代码编译速度较慢)
        idea:同样需要安装针对m1的idea,可以通过官网下载
        mysql:mysql5.7
        数据库客户端工具:Navicat
        Host修改工具:SwitchHost
        其他软件:redis-server、zookeeper、kafka、mongoDb、redis客户端redis-pro、sublime、photoshopCc2019、Git、Svn、Maven

        对于性能:

        对比的电脑有:mac1:macbook pro 2015 16g内存、256存储、15.4英寸、i7cpu

                                 mac2:macbook pro 2016 16g内存、256存储、15.4英寸、i7cpu

                                 mac3:本文主要测评的air m1

        安装完全一样的jdk、idea,通过maven编译同样的spring boot的微服务

                                mac1编译时长:12秒

                                mac2编译时长:15秒

                                mac3编译时长:25秒

        将mac3的jdk、idea更换为适用于m1的版本后,编译时长8秒左右,所以对于m1款的电脑如果有专门针对arm的软件版本的话,性能会提示很多。

         结论:通过测评尝试完全可以适用于java程序员的日常开发,对于预算有限的人来说可以进行选购

### 使用 AutoGPTQ 库量化 Transformer 模型 为了使用 `AutoGPTQ` 对 Transformer 模型进行量化,可以遵循如下方法: 安装所需的依赖包是必要的操作。通过 pip 安装 `auto-gptq` 可以获取最新版本的库。 ```bash pip install auto-gptq ``` 加载预训练模型并应用 GPTQ (General-Purpose Tensor Quantization) 技术来减少模型大小和加速推理过程是一个常见的流程。下面展示了如何利用 `AutoGPTQForCausalLM` 类来进行这一工作[^1]。 ```python from transformers import AutoModelForCausalLM, AutoTokenizer from auto_gptq import AutoGPTQForCausalLM model_name_or_path = "facebook/opt-350m" quantized_model_dir = "./quantized_model" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained(model_name_or_path) # 加载已经量化的模型或者创建一个新的量化器对象用于量化未压缩过的模型 gptq_model = AutoGPTQForCausalLM.from_pretrained(quantized_model_dir, model=model, tokenizer=tokenizer) ``` 对于那些希望进一步优化其部署环境中的模型性能的人来说,`AutoGPTQ` 提供了多种配置选项来自定义量化参数,比如位宽(bit-width),这有助于平衡精度损失与运行效率之间的关系。 #### 注意事项 当处理特定硬件平台上的部署时,建议查阅官方文档以获得最佳实践指导和支持信息。此外,在实际应用场景之前应该充分测试经过量化的模型以确保满足预期的质量标准。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值