数据分析------统计学知识点(四)

数据算法基础

1.准确率与置信区间

当评估一个算法的性能时,通常首先考虑准确率(Accuracy),这是一个衡量模型整体预测准确性的指标。

(1)准确率(Accuracy)

表示正确预测的比例,公式:准确率=预测正确的样本数量/预测总的样本数量

准确率并不能总能有效地反映模型的性能,尤其在类别不平衡的数据集中

为更准确评估模型在特定类别上的表现,使用精确率(Precision)和召回率(Recall)

  • 混淆矩阵——是一个特定于二分类问题的表格,用于可视化模型性能
预测是类别A预测是类别B

实际是类别A

TP-True PositiveFN-False Negative
实际是类别BFP-False PositiveTN-True Negative

真正例(TP):模型正确地预测正类(类别A)

假负例(FN):模型错误地将正类(类别A)预测为负类(类别B)

假正例(FP):模型错误地将负类(类别B)预测为正类(类别A)

真负例(TN):模型正确地预测负类(类别B)

(2)精确率(Precision)

精确率是衡量在所有模型预测为正类的样本中,实际为正类的样本的比例

精确率=真正例(TP)/(假正例FP+真正例TP)

其中真正例TP表示正确预测为正类的样本数,假正例FP表示错误预测为正类的负类样本数。

精确率对于那些错误预测正类代价较高的任务尤为重要

(3)召回率(Recall)

尽管提高指令以消除所有假正例可以将精确率提升至100%,这看似能极大提升精度,然而这样做可能会大幅度降低模型的召回率。因为模型会变得过于谨慎。——>为避免这种过度保守的预测导致正类样本的遗漏,考虑召回率这一指标。

召回率衡量的是模型正确预测的正类样本(TP)占所有实际正类样本的比例,反映了模型对正类的检出能力。

召回率=真正例(TP)/(假负例FN+真正例TP)

其中假负例FN表示实际为正类但被模型预测为负类的样本数

召回率对于那些漏检正类代价较高的任务尤为重要

召回率衡量了模型的查全能力,即所有正类样本中,模型能正确识别出多少

目标:防止模型过于保守,以至于错过真正的正类样本。

精确率和召回率通常一起使用以全面评估模型性能,二者相互依存,往往需要找一个平衡点

一个单一的高指标并不足以定义一个好的模型,而是需要同时考虑减少假正例和假负例的能力确定模型的优劣。

(4)置信区间:预测的可信程度

精确率、召回率确实是评估算法性能的重要指标,但在实际应用中,它们并不足以全面评价算法的优劣。现实生活问题往往涉及到连续数值的预测,而不仅仅是分类问题。

置信区间是一种统计参数估计方法,它利用一个区间来预测参数的可能值,这个区间的可信度即为置信度。

一般来说,置信度和置信区间的宽度是通向变化,当置信度很高时,置信区间通常较宽;置信度较宽也意味着置信度较高。

(5)平衡指标:找到最佳点
在实际应用中,没有一个指标能适用于所有情况。我们需要根据场景的不同,对指标进行权衡。
例如,在垃圾邮件检测的场景中,由于将合法邮件错误地分类为垃圾邮件可能导致重要信息的丢失,所以我们会更注重提高精确率。而在癌症筛查的场景中,由于漏掉癌症患者的后果可能是致命的,我们则会更注重提高召回率。
在我们的购买预测模型中,平衡这些指标也同样重要。如果我们的产品成本较高,错误地预测一个用户会购买(假正例)可能导致库存积压和资金浪费,那么我们可能会更倾向于提高精确率。反之,如果我们的产品是基于订阅的服务,且每个未识别出的潜在购买者(假反例)都代表着丢失的收入,那么我们可能会更关注提高召回率,最终,找到准确率、精确率和召回率之间的最佳平衡点,需要考虑业务目标、产品特性和用户行为。数据分析师的工作就是通过不断测试和调整模型,来实现这一平衡,优化模型性能,为公司带来最大的价值。

  • 20
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值