SPFA算法

SPFA

        SPFA是一种用队列优化的Bellman_ford算法,看上去和BFS很像,Bellman_ford效率较低就不介绍了,还有一种用DFS优化Bellman_ford的SPFA但是往往这种方法比平时更加劣化没有队列优化的好用,平时用SPFA就够用了。可以解决负边问题,可以判断负环是否存在。在稀疏图中,采用类似邻接链表储存比较节省空间。

总而言之,SPFA算法仅仅只是对该算法的一个优化。
Bellman_ford算法会遍历所有的边,但是有很多的边遍历了其实没有什么意义,我们只用遍历那些到源点距离变小的点所连接的边即可,只有当一个点的前驱结点更新了,该节点才会得到更新;因此考虑到这一点,我们将创建一个队列每一次加入距离被更新的结点。

时间复杂度

平均情况下为o(m),最坏情况为o(nm),其中n为点的数量,m为边的数量。

算法思路

利用队列去优化Bellman_ford算法;

1.将点1插到队列中queue<==1;

2.while queue 不空

1) t<==q.front()

2)q.pop();

3.更新t的所有出边 t ==> b,权值为w
 queue <==b (若该点被更新过,则拿该点更新其他点)

例题spfa求最短路

给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环, 边权可能为负数。

请你求出 1 号点到 n 号点的最短距离,如果无法从 1 号点走到 n 号点,则输出 impossible。

数据保证不存在负权回路。

输入格式
第一行包含整数 n 和 m。

接下来 m 行每行包含三个整数 x,y,z,表示存在一条从点 x 到点 y 的有向边,边长为 z。

输出格式
输出一个整数,表示 1 号点到 n 号点的最短距离。

如果路径不存在,则输出 impossible。

数据范围
1≤n,m≤105,
图中涉及边长绝对值均不超过 10000。

输入样例:
3 3
1 2 5
2 3 -3
1 3 4
输出样例
2

#include<iostream>
#include<algorithm>
#include<cstring>
#include<queue>
using namespace std;
const int N =150010;
int n,m;
int dist[N];//个点到源点的距离
int e[N],w[N],ne[N],h[N],idx;
bool st[N];//是否在队列中
void add(int a,int b,int c)
{
    e[idx]=b,w[idx]=c,ne[idx]=h[a],h[a]=idx++;
}//邻接表存储
int spfa()
{
    memset(dist,0x3f,sizeof dist);//初始距离
    queue<int> q;
    dist[1]=0;
    q.push(1);
    while(q.size())
    {
        int t=q.front();
        q.pop();
        st[t]=false;
        for(int i=h[t];i!=-1;i=ne[i])
        {
            int j=e[i];
            if(dist[j]>dist[t]+w[i])
            {
                dist[j]=dist[t]+w[i];
                if(!st[j])
                {
                    q.push(j);
                    st[j]=true;
                }
            }
        }
    }
    return dist[n];
}
int main()
{
    cin>>n>>m;
    memset(h,-1,sizeof h);//初始化链表
    while(m--)
    {
        int a,b,c;
        cin>>a>>b>>c;
        add(a,b,c);
    }
    int t=spfa();
    if(t==0x3f3f3f3f)  puts("impossible");
    else  printf("%d\n",t);
    return 0;
}

例题spfa求负环 

给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环, 边权可能为负数。

请你判断图中是否存在负权回路。

输入格式
第一行包含整数 n 和 m。

接下来 m 行每行包含三个整数 x,y,z,表示存在一条从点 x 到点 y 的有向边,边长为 z。

输出格式
如果图中存在负权回路,则输出 Yes,否则输出 No。

数据范围
1≤n≤2000,
1≤m≤10000,
图中涉及边长绝对值均不超过 10000。

输入样例:
3 3
1 2 -1
2 3 4
3 1 -4
输出样例
Yes

#include<iostream>
#include<algorithm>
#include<cstring>
#include<queue>
using namespace std;
const int N =2010,M=10010;
int n,m;
int dist[N],cnt[N];cnt[N]记录当前x点到虚拟源点最短路的边数,初始每个点到虚拟源点的距离为0,只要他能再走n步,即cnt[x] >= n,则表示该图中一定存在负环,由于从虚拟源点到x至少经过n条边时,则说明图中至少有n + 1个点,表示一定有点是重复使用
int e[M],w[M],ne[M],h[N],idx;
bool st[N];
void add(int a,int b,int c)
{
    e[idx]=b,w[idx]=c,ne[idx]=h[a],h[a]=idx++;
}
bool spfa()
{
    memset(dist,0x3f,sizeof dist);
    queue<int> q;
    for(int i=1;i<=n;i++)//可能负环不从1开始,1到不了,所有初始将所有点都加到队列中
    {
        q.push(i);
        st[i]=true;
    }
    while(q.size())
    {
        int t=q.front();
        q.pop();
        st[t]=false;
        for(int i=h[t];i!=-1;i=ne[i])
        {
            int j=e[i];
            if(dist[j]>dist[t]+w[i])
            {
                dist[j]=dist[t]+w[i];
                cnt[j]=cnt[t]+1;
                if(cnt[j]>=n)  return true;
                if(!st[j])
                {
                    q.push(j);
                    st[j]=true;
                }
            }
        }
    }
    return false;
}
int main()
{
    cin>>n>>m;
    memset(h,-1,sizeof h);
    while(m--)
    {
        int a,b,c;
        cin>>a>>b>>c;
        add(a,b,c);
    }
    int t=spfa();
    if(spfa())  puts("Yes");
    else  puts("No");
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值