SPFA
SPFA是一种用队列优化的Bellman_ford算法,看上去和BFS很像,Bellman_ford效率较低就不介绍了,还有一种用DFS优化Bellman_ford的SPFA但是往往这种方法比平时更加劣化没有队列优化的好用,平时用SPFA就够用了。可以解决负边问题,可以判断负环是否存在。在稀疏图中,采用类似邻接链表储存比较节省空间。
总而言之,SPFA算法仅仅只是对该算法的一个优化。
Bellman_ford算法会遍历所有的边,但是有很多的边遍历了其实没有什么意义,我们只用遍历那些到源点距离变小的点所连接的边即可,只有当一个点的前驱结点更新了,该节点才会得到更新;因此考虑到这一点,我们将创建一个队列每一次加入距离被更新的结点。
时间复杂度
平均情况下为o(m),最坏情况为o(nm),其中n为点的数量,m为边的数量。
算法思路
利用队列去优化Bellman_ford算法;
1.将点1插到队列中queue<==1;
2.while queue 不空
1) t<==q.front()
2)q.pop();
3.更新t的所有出边 t ==> b,权值为w
queue <==b (若该点被更新过,则拿该点更新其他点)
例题spfa求最短路
给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环, 边权可能为负数。
请你求出 1 号点到 n 号点的最短距离,如果无法从 1 号点走到 n 号点,则输出 impossible。
数据保证不存在负权回路。
输入格式
第一行包含整数 n 和 m。
接下来 m 行每行包含三个整数 x,y,z,表示存在一条从点 x 到点 y 的有向边,边长为 z。
输出格式
输出一个整数,表示 1 号点到 n 号点的最短距离。
如果路径不存在,则输出 impossible。
数据范围
1≤n,m≤105,
图中涉及边长绝对值均不超过 10000。
输入样例:
3 3
1 2 5
2 3 -3
1 3 4
输出样例:
2
#include<iostream>
#include<algorithm>
#include<cstring>
#include<queue>
using namespace std;
const int N =150010;
int n,m;
int dist[N];//个点到源点的距离
int e[N],w[N],ne[N],h[N],idx;
bool st[N];//是否在队列中
void add(int a,int b,int c)
{
e[idx]=b,w[idx]=c,ne[idx]=h[a],h[a]=idx++;
}//邻接表存储
int spfa()
{
memset(dist,0x3f,sizeof dist);//初始距离
queue<int> q;
dist[1]=0;
q.push(1);
while(q.size())
{
int t=q.front();
q.pop();
st[t]=false;
for(int i=h[t];i!=-1;i=ne[i])
{
int j=e[i];
if(dist[j]>dist[t]+w[i])
{
dist[j]=dist[t]+w[i];
if(!st[j])
{
q.push(j);
st[j]=true;
}
}
}
}
return dist[n];
}
int main()
{
cin>>n>>m;
memset(h,-1,sizeof h);//初始化链表
while(m--)
{
int a,b,c;
cin>>a>>b>>c;
add(a,b,c);
}
int t=spfa();
if(t==0x3f3f3f3f) puts("impossible");
else printf("%d\n",t);
return 0;
}
例题spfa求负环
给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环, 边权可能为负数。
请你判断图中是否存在负权回路。
输入格式
第一行包含整数 n 和 m。
接下来 m 行每行包含三个整数 x,y,z,表示存在一条从点 x 到点 y 的有向边,边长为 z。
输出格式
如果图中存在负权回路,则输出 Yes,否则输出 No。
数据范围
1≤n≤2000,
1≤m≤10000,
图中涉及边长绝对值均不超过 10000。
输入样例:
3 3
1 2 -1
2 3 4
3 1 -4
输出样例:
Yes
#include<iostream>
#include<algorithm>
#include<cstring>
#include<queue>
using namespace std;
const int N =2010,M=10010;
int n,m;
int dist[N],cnt[N];cnt[N]记录当前x点到虚拟源点最短路的边数,初始每个点到虚拟源点的距离为0,只要他能再走n步,即cnt[x] >= n,则表示该图中一定存在负环,由于从虚拟源点到x至少经过n条边时,则说明图中至少有n + 1个点,表示一定有点是重复使用
int e[M],w[M],ne[M],h[N],idx;
bool st[N];
void add(int a,int b,int c)
{
e[idx]=b,w[idx]=c,ne[idx]=h[a],h[a]=idx++;
}
bool spfa()
{
memset(dist,0x3f,sizeof dist);
queue<int> q;
for(int i=1;i<=n;i++)//可能负环不从1开始,1到不了,所有初始将所有点都加到队列中
{
q.push(i);
st[i]=true;
}
while(q.size())
{
int t=q.front();
q.pop();
st[t]=false;
for(int i=h[t];i!=-1;i=ne[i])
{
int j=e[i];
if(dist[j]>dist[t]+w[i])
{
dist[j]=dist[t]+w[i];
cnt[j]=cnt[t]+1;
if(cnt[j]>=n) return true;
if(!st[j])
{
q.push(j);
st[j]=true;
}
}
}
}
return false;
}
int main()
{
cin>>n>>m;
memset(h,-1,sizeof h);
while(m--)
{
int a,b,c;
cin>>a>>b>>c;
add(a,b,c);
}
int t=spfa();
if(spfa()) puts("Yes");
else puts("No");
return 0;
}