Java编写MapReduce实例

本文详细介绍在Hadoop3.2伪分布式环境下,使用Maven项目进行WordCount程序的开发、配置及运行流程。涵盖Maven依赖添加、Hadoop配置文件引入、Mapper与Reducer类编写、启动类配置及测试运行步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一.准备工作

  1. 参照《CentOS下Hadoop3.2的伪分布式和集群安装》安装好Hadoop
  2. 安装Maven

二.测试代码

2.1 在Maven项目中添加依赖

        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-client</artifactId>
            <version>3.2.1</version>
        </dependency>

2.2 添加Hadoop的配置文件

​ 把Hadoop集群中Master的core-site.xml和hdfs-site.xml文件复制到Maven项目的resources目录下。

image-20200102154840059

2.3 测试代码

2.3.1 编写Mapper类

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.util.StringUtils;

import java.io.IOException;

public class WordCountMapper extends Mapper<LongWritable, Text, Text, IntWritable> {
    @Override
    protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
        String[] words = StringUtils.split(value.toString(), ' ');
        for(String word : words){
            context.write(new Text(word), new IntWritable(1));
        }
    }
}

2.3.2 编写Reducer类

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

import java.io.IOException;

public class WorldCountReduce extends Reducer<Text, IntWritable, Text, IntWritable> {
    @Override
    protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
        int sum = 0;
        for(IntWritable i : values){
            sum += i.get();
        }
        context.write(key, new IntWritable(sum));
    }
}

2.3.3 编写启动类

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class WordCountLauncher {
    public static void main(String[] args){
        Configuration conf = new Configuration();
        try{
            FileSystem fs = FileSystem.get(conf);
            Job job = Job.getInstance(conf);
            job.setJarByClass(WordCountLauncher.class);
            job.setJobName("wc");
            job.setMapperClass(WordCountMapper.class);
            job.setReducerClass(WorldCountReduce.class);
            job.setMapOutputKeyClass(Text.class);
            job.setMapOutputValueClass(IntWritable.class);
            FileInputFormat.setInputPaths(job, new Path("/input/test.txt"));
            Path output = new Path("/output/wc");
            fs.deleteOnExit(output);
            FileOutputFormat.setOutputPath(job, output);
            boolean f = job.waitForCompletion(true);
            if(f){
                System.out.println("execute job successfully.");
            }
        }catch (Exception e){
            e.printStackTrace();
        }
    }
}

2.4 运行测试

​ 在运行WordCountLauncher启动类之前,我们先在HDFS的目录/input下上传一个test.txt文件,然后直接在IDEA中运行WordCountLauncher类,运行完成后通过浏览器访问http://hadoop-master:9870/查看part-r-00000文件。

image-20200102154621384

三.Issue分析

3.1 java.io.FileNotFoundException: HADOOP_HOME and hadoop.home.dir are unset.

错误原因分析:在Windows中的IDEA运行测试代码发现这个异常是因为Windows中没有设置HADOOP_HOME环境变量。

解决方法:从Hadoop官方网站下载Hadoop编译好的二进制包,解压到Windows的某个目录。然后设置环境变量HADOOP_HOME为Hadoop的解压目录,把%HADOOP_HOME%/bin路径添加到Path环境变量中。

如果下载的Hadoop包的bin目录中没有hadoop.dll和winutils.exe文件,请从如下地址(https://github.com/cdarlint/winutils)下载相应的版本的文件放到%HADOOP_HOME%/bin目录中。

配置完后需要重启IDEA。

基于hadoop的Hive数据仓库JavaAPI简单调用的实例,关于Hive的简介在此不赘述。hive提供了三种用户接口:CLI,JDBC/ODBC和 WebUI CLI,即Shell命令行 JDBC/ODBC 是 Hive 的Java,与使用传统数据库JDBC的方式类似 WebGUI是通过浏览器访问 Hive 本文主要介绍的就是第二种用户接口,直接进入正题。 1、Hive 安装: 1)hive的安装请参考网上的相关文章,测试时只在hadoop一个节点上安装hive即可。 2)测试数据data文件'\t'分隔: 1 zhangsan 2 lisi 3 wangwu 3)将测试数据data上传到linux目录下,我放置在:/home/hadoop01/data 2、在使用 JDBC 开发 Hive 程序时, 必须首先开启 Hive 的远程服务接口。使用下面命令进行开启: Java代码 收藏代码 hive --service hiveserver >/dev/null 2>/dev/null & 我们可以通过CLI、Client、Web UI等Hive提供的用户接口来和Hive通信,但这三种方式最常用的是CLI;Client 是Hive的客户端,用户连接至 Hive Server。在启动 Client 模式的时候,需要指出Hive Server所在节点,并且在该节点启动 Hive Server。 WUI 是通过浏览器访问 Hive。今天我们来谈谈怎么通过HiveServer来操作Hive。   Hive提供了jdbc驱动,使得我们可以用Java代码来连接Hive并进行一些类关系型数据库的sql语句查询等操作。同关系型数据库一样,我们也需要将Hive的服务打开;在Hive 0.11.0版本之前,只有HiveServer服务可用,你得在程序操作Hive之前,必须在Hive安装的服务器上打开HiveServer服务,如下: 1 [wyp@localhost/home/q/hive-0.11.0]$ bin/hive --service hiveserver -p10002 2 Starting Hive Thrift Server 上面代表你已经成功的在端口为10002(默认的端口是10000)启动了hiveserver服务。这时候,你就可以通过Java代码来连接hiveserver,代码如下:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值