c++ AVLTree实现,插入公式

概念

二叉搜索树虽可以缩短查找的效率,但如果数据有序或接近有序二叉搜索树将退化为单支树,查
找元素相当于在顺序表中搜索元素,效率低下。因此,两位俄罗斯的数学家G.M.Adelson-Velskii
和E.M.Landis在1962年发明了一种解决上述问题的方法:当向二叉搜索树中插入新结点后,如果能保证每个结点的左右子树高度之差的绝对值不超过1(需要对树中的结点进行调整),即可降低树的高度,从而减少平均搜索长度。
一棵AVL树或者是空树,或者是具有以下性质的二叉搜索树:

1.它的左右子树都是AVL树
2.左右子树高度之差(简称平衡因子)的绝对值不超过1(-1/0/1)
 

节点设计

我们首先要知道avl树它的底层其实是一颗树,所以我们在设计avl树的节点的时候可以设计成类似链表那种类型的封装类。

template<class K,class V>
struct avltnode
{
	K _key;                //key值
	V _value;              //key对应的value
	avltnode* _left;       //左节点
	avltnode* _right;      //右节点
	avltnode* _parent;     //父节点
	int bf = 0;            //平衡因子
	avltnode() = default;  //默认构造
	avltnode(const K&key, const V& value) :_key(key), _value(value), _left(nullptr), _right(nullptr), _parent(nullptr) {}
};

我们再去搞一个类去封装这些节点

template<class K,class V>
class avlt
{
public:
	typedef avltnode<K,V> avltnode;

	avlt() = default;

private:
	avltnode* _node=nullptr;
};


inset函数基本逻辑


 1. 先按照二叉搜索树的规则将节点插入到AVL树中
 2. 新节点插入后,AVL树的平衡性可能会遭到破坏,此时就需要更新平衡因子,并检测是否
破坏了AVL树 的平衡性root(插入节点)插入后,rootp(插入节点的父节点)的平衡因子一定需要调整,在插入之前,rootp的平衡因子分为三种情况:-1,0, 1, 分以下两种情况:
1. 如果root插入到rootp的左侧,只需给rootp的平衡因子-1即可
2. 如果root插入到rootp的右侧,只需给rootp的平衡因子+1即可

此时:rootp的平衡因子可能有三种情况:0,正负1, 正负2
1. 如果rootp的平衡因子为0,说明插入之前rootp的平衡因子为正负1,插入后被调整成0,此时满足AVL树的性质,插入成功
2. 如果rootp的平衡因子为正负1,说明插入前rootp的平衡因子一定为0,插入后被更新成正负1,此时以rootp为根的树的高度增加,需要继续向上更新
3. 如果pParent的平衡因子为正负2,则rootp的平衡因子违反平衡树的性质,需要对其进行旋转处理

代码


bool insert(K key, V value)
{
	if (_node == nullptr)
	{
		_node = new avltnode(key, value);
		return true;
	}
	avltnode* root = _node;
	avltnode* rootp = _node;
	while(root)
	{
		if(key<root->_key)
		{
			rootp = root;
			root = root->_left;
		}
		else if (key > root->_key)
		{
			rootp = root;
			root = root->_right;
		}
		else
		{
			return false;
		}
	}
	avltnode *newnode = new avltnode(key, value);
	if (newnode->_key < rootp->_key)
	{
		rootp->_left = newnode;
	}
	else
	{
		rootp->_right = newnode;
	}
	newnode->_parent = rootp;

	avltnode* cur = newnode;
	//旋转代码
	while (rootp)
	{
		if (rootp->_left == cur)
		{
			rootp->bf--;
		}
		else
		{
			rootp->bf++;
		}

		if (rootp->bf == 0)
		{
			break;
		}
		else if (rootp->bf == 1 || rootp->bf == -1)
		{
			cur = rootp;
			rootp = rootp->_parent;
		}
		else if (rootp->bf == 2 || rootp->bf == -2)
		{
			if (rootp->bf == 2 && cur->bf == 1)
			{
				rotateL(rootp);
			}
			else if (rootp->bf == -2 && cur->bf == -1)
			{
				rotateR(rootp);
			}
			else if (rootp->bf == 2 && cur->bf == -1)
			{
				rotateRL(rootp);
			}
			else if (rootp->bf == -2 && cur->bf == 1)
			{
				rotateLR(rootp);
			}
	        break;//旋转完之后就不需要进入循环了
		}
		else
			assert(false);

	}
	

	return true;
}

右旋

我们大的方向就是这样20是我们平衡因子为2的地方,subr是p(简写parent)的左边,subrl是subl的右边。
最基本的代码:

然后我们需要处理各自父节点的变化,一集更新各自的平衡因子

完整代码:
 

	void rotateR(avltnode* rootp)
	{
		avltnode* subL = rootp->_left;
		avltnode* sunLR = subL->_right;

		rootp->_left = sunLR;
		if (sunLR)
		{
			sunLR->_parent = rootp;
		}


		avltnode* rootpp = rootp->_parent;
		subL->_right = rootp;
		rootp->_parent = subL;

		if (rootpp == nullptr)
		{
			_node = subL;
			subL->_parent = nullptr;
		}
		else
		{
			if (rootpp->_left == rootp)
			{
				rootpp->_left = subL;
			}
			else
			{
				rootpp->_right = subL;
			}
			subL->_parent = rootpp;
		}
		subL->bf = rootp->bf = 0;

	}

左旋

左旋类似于右旋

这里是rootp的平衡因子为2,cur平衡因子为1的时候需要左旋
代码:

	void rotateL(avltnode*rootp)
	{
		avltnode* subR = rootp->_right;
		avltnode* subRL = subR->_left;

		rootp->_right = subRL;
		if (subRL)
			subRL->_parent = rootp;

		subR->_left = rootp;
		avltnode* rootpp = rootp->_parent;
		rootp->_parent = subR;

		if (rootpp == nullptr)
		{
			_node = subR;
			subR->_parent = nullptr;
		}
		else
		{
			if (rootpp->_left == rootp)
			{
				rootpp->_left = subR;
			}
			else
			{
				rootpp->_right = subR;
			}
			subR->_parent = rootpp;
		}
		subR->bf = rootp->bf = 0;

	}

左右双旋

当我们的rootp->bf == -2 && cur->bf == 1这时候我们就需要左右双旋。


将双旋变成单旋后再旋转,即:先对30进行左单旋,然后再对90进行右单旋,旋转完成后再考虑平衡因子的更新。
这里的60就是我们subLR,这时候我们需要根据b的平衡因子的情况再来更新其他平衡因子。
具体代码:

void rotateLR(avltnode* rootp)
{
	avltnode* subL = rootp->_left;
	avltnode* subLR = subL->_right;
	int b = subLR->bf;    //我们将subLR赋值给b
	rotateL(rootp->_left);
	rotateR(rootp);
	if (b == 0)//当b==0的时候
	{
		subL->bf = 0;
		subLR->bf = 0;
		rootp->bf = 0;
	}
	else if (b == 1)//当b==1的时候
	{
		rootp->bf = 0;
		subLR->bf = 0;
		subL->bf = -1;
	}
	else if (b == -1)//当b==-1的时候
	{
		rootp->bf = 1;
		subLR->bf = 0;
		subL->bf = 0;
	}
}

右左双旋

当我们的rootp->bf == 2 && cur->bf == -1这时候我们就需要右左双旋。

原理同上~
具体代码:

void rotateRL(avltnode* rootp)
{
	avltnode*subR = rootp->_right;
	avltnode* subRL = subR->_left;
	int b = subRL->bf;
	rotateR(rootp->_right);
	rotateL(rootp);
	if (b == 0)
	{
		subR->bf = 0;
		subRL->bf = 0;
		rootp->bf = 0;
	}
	else if (b == 1)
	{
		subR->bf = 0;
		subRL->bf = 0;
		rootp->bf = -1;
	}
	else if (b == -1)
	{
		rootp->bf = 0;
		subRL->bf = 0;
		subR->bf = 1;
	}
	else
		assert(false);
	
}

大的基本思路就完成了
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值