基于IDEA+MySQL+Tomcat开发的基于协同过滤算法服装推荐系统
项目介绍💁🏻
随着互联网的发展,电子商务已经成为了人们生活中不可或缺的一部分。在众多的电子商务网站中,服装类的网站占据了很大一部分。然而,由于服装种类繁多,消费者往往在选择时感到困惑,不知道应该选择哪一款服装。因此,我们需要一个能够根据消费者的购物历史和喜好,为他们推荐合适的服装的系统。
本项目基于IDEA开发环境,使用MySQL作为数据库,Tomcat作为服务器,采用协同过滤算法来实现服装推荐系统。协同过滤算法是一种常用的推荐算法,它通过分析用户的行为数据,找出具有相似行为或兴趣的用户,然后根据这些用户的行为来预测目标用户可能感兴趣的商品。
在本项目中,我们将收集用户的购物历史数据,包括他们购买的商品、购买的时间等,然后使用协同过滤算法对这些数据进行分析,最后为用户推荐他们可能感兴趣的商品。我们希望通过这个项目,能够帮助消费者更好地选择他们喜欢的服装,提高他们的购物体验。
功能模块
推荐算法是人工智能和机器学习领域中的一个重要分支,它的主要目标是预测用户可能感兴趣的项目或产品。推荐系统在各种应用中都有广泛的应用,如电子商务网站、音乐和视频流媒体服务、社交网络等。
推荐算法的模块通常包括以下几个部分:数据收集、数据处理、特征提取、模型训练和推荐生成。数据收集阶段,我们需要收集用户的行为数据,如购买历史、浏览历史等。数据处理阶段,我们需要清洗和格式化数据,以便于后续的处理。特征提取阶段,我们需要从原始数据中提取有用的特征,如用户的购买频率、购买时间等。模型训练阶段,我们使用机器学习算法来训练模型,使其能够根据用户的特征来预测他们可能感兴趣的项目。最后,推荐生成阶段,我们使用训练好的模型来生成推荐列表。
页面效果
系统的部分功能模块页面如下所示。
用户前台页面“http://localhost:8080/springboot300z2/front/pages/login/login.html”
前台用户登录
用户注册
系统主要信息
用户下单购买
商品信息
后台系统登录
后台系统管理
用户管理
已支付订单
轮播图管理
商品类型管理
协同过滤算法实现细则,根据用户购买的商品来进行复杂算法的推荐分析
协同算法实现(推荐算法部分)
进行商品五的购买之后,首页应该推荐出来商品五位序为1
当前排序的位序商品1为第一个
购买之后商品的位序排列发生变化 商品五排队为1
运行教程
编号249-社区养老医疗综合服务平台
系统源码
进入公众号,在右上角有放大镜,就是搜索公众号内全部文章的题目,公众号各类的素材和相关的题目都可以通过这个方法来进行搜索。
输入要自己想要看的题材和对应的素材就可以了,因为的将各个类目的题材,都浓缩在题目里面, 所以只要是标题里面有的,或者涵盖了你的题目素材基本上都可以搜索的到。
关注微信公众号 “letcoding”---》源缘编程