- Copyright (c) 2017, 烟台大学计算机学院
- *All rights reserved.
- *作 者:张行
- *完成日期:2017年11月9日
- *版 本 号:v1.0
- *问题描述:(1)层次遍历算法的验证
(2)二叉树构造算法的验证
(3)中序线索化二叉树的算法验证
(4)哈夫曼编码的算法验证 - *结果显示:如图所示
(1)
#include <stdio.h>
#include "btreee.h"
void LevelOrder(BTNode *b)
{
BTNode *p;
BTNode *qu[MaxSize]; //定义环形队列,存放节点指针
int front,rear; //定义队头和队尾指针
front=rear=-1; //置队列为空队列
rear++;
qu[rear]=b; //根节点指针进入队列
while (front!=rear) //队列不为空
{
front=(front+1)%MaxSize;
p=qu[front]; //队头出队列
printf("%c ",p->data); //访问节点
if (p->lchild!=NULL) //有左孩子时将其进队
{
rear=(rear+1)%MaxSize;
qu[rear]=p->lchild;
}
if (p->rchild!=NULL) //有右孩子时将其进队
{
rear=(rear+1)%MaxSize;
qu[rear]=p->rchild;
}
}
}
int main()
{
BTNode *b;
CreateBTNode(b,"A(B(D,E(H(J,K(L,M(,N))))),C(F,G(,I)))");
printf("二叉树b: ");
DispBTNode(b);
printf("\n");
printf("层次遍历序列:\n");
LevelOrder(b);
DestroyBTNode(b);
return 0;
}
(2)
#include <stdio.h>
#include <malloc.h>
#include "btreee.h"
BTNode *CreateBT1(char *pre,char *in,int n)
/*pre存放先序序列,in存放中序序列,n为二叉树结点个数,
本算法执行后返回构造的二叉链的根结点指针*/
{
BTNode *s;
char *p;
int k;
if (n<=0) return NULL;
s=(BTNode *)malloc(sizeof(BTNode)); //创建二叉树结点*s
s->data=*pre;
for (p=in; p<in+n; p++) //在中序序列中找等于*ppos的位置k
if (*p==*pre) //pre指向根结点
break; //在in中找到后退出循环
k=p-in; //确定根结点在in中的位置
s->lchild=CreateBT1(pre+1,in,k); //递归构造左子树
s->rchild=CreateBT1(pre+k+1,p+1,n-k-1); //递归构造右子树
return s;
}
int main()
{
ElemType pre[]="ABDGCEF",in[]="DGBAECF";
BTNode *b1;
b1=CreateBT1(pre,in,7);
printf("b1:");
DispBTNode(b1);
printf("\n");
return 0;
}
(3)
#include <stdio.h>
#include <malloc.h>
#define MaxSize 100
typedef char ElemType;
typedef struct node
{
ElemType data;
int ltag,rtag; //增加的线索标记
struct node *lchild;
struct node *rchild;
} TBTNode;
void CreateTBTNode(TBTNode * &b,char *str)
{
TBTNode *St[MaxSize],*p=NULL;
int top=-1,k,j=0;
char ch;
b=NULL; //建立的二叉树初始时为空
ch=str[j];
while (ch!='\0') //str未扫描完时循环
{
switch(ch)
{
case '(':
top++;
St[top]=p;
k=1;
break; //为左结点
case ')':
top--;
break;
case ',':
k=2;
break; //为右结点
default:
p=(TBTNode *)malloc(sizeof(TBTNode));
p->data=ch;
p->lchild=p->rchild=NULL;
if (b==NULL) //*p为二叉树的根结点
b=p;
else //已建立二叉树根结点
{
switch(k)
{
case 1:
St[top]->lchild=p;
break;
case 2:
St[top]->rchild=p;
break;
}
}
}
j++;
ch=str[j];
}
}
void DispTBTNode(TBTNode *b)
{
if (b!=NULL)
{
printf("%c",b->data);
if (b->lchild!=NULL || b->rchild!=NULL)
{
printf("(");
DispTBTNode(b->lchild);
if (b->rchild!=NULL) printf(",");
DispTBTNode(b->rchild);
printf(")");
}
}
}
TBTNode *pre; //全局变量
void Thread(TBTNode *&p)
{
if (p!=NULL)
{
Thread(p->lchild); //左子树线索化
if (p->lchild==NULL) //前驱线索
{
p->lchild=pre; //建立当前结点的前驱线索
p->ltag=1;
}
else p->ltag=0;
if (pre->rchild==NULL) //后继线索
{
pre->rchild=p; //建立前驱结点的后继线索
pre->rtag=1;
}
else pre->rtag=0;
pre=p;
Thread(p->rchild); //右子树线索化
}
}
TBTNode *CreaThread(TBTNode *b) //中序线索化二叉树
{
TBTNode *root;
root=(TBTNode *)malloc(sizeof(TBTNode)); //创建根结点
root->ltag=0;
root->rtag=1;
root->rchild=b;
if (b==NULL) //空二叉树
root->lchild=root;
else
{
root->lchild=b;
pre=root; //pre是*p的前驱结点,供加线索用
Thread(b); //中序遍历线索化二叉树
pre->rchild=root; //最后处理,加入指向根结点的线索
pre->rtag=1;
root->rchild=pre; //根结点右线索化
}
return root;
}
void ThInOrder(TBTNode *tb)
{
TBTNode *p=tb->lchild; //指向根结点
while (p!=tb)
{
while (p->ltag==0) p=p->lchild;
printf("%c ",p->data);
while (p->rtag==1 && p->rchild!=tb)
{
p=p->rchild;
printf("%c ",p->data);
}
p=p->rchild;
}
}
int main()
{
TBTNode *b,*tb;
CreateTBTNode(b,"A(B(D(,G)),C(E,F))");
printf(" 二叉树:");
DispTBTNode(b);
printf("\n");
tb=CreaThread(b);
printf(" 线索中序序列:");
ThInOrder(tb);
printf("\n");
return 0;
}