问题描述:
倒水问题 “fill A” 表示倒满A杯,"empty A"表示倒空A杯,“pour A B” 表示把A的水倒到B杯并且把B杯倒满或A倒空。
input:
输入包含多组数据。每组数据输入 A, B, C 数据范围 : 0 < A <= B 、C <= B <=1000 、A和B互质。
output:
你的程序的输出将由一系列的指令组成。这些输出行将导致任何一个罐子正好包含C单位的水。每组数据的最后一行输出应该是“success”。输出行从第1列开始,不应该有空行或任何尾随空格。
解题思路:
该题目是隐式图问题,只给出了起始状态和最终状态,让我们求出一条从起始到终点可行的过程,在该问题中,存在很多中间状态,有些状态是可行的,有些状态是不可行的,则我们可以将这些状态看成一个图的中间点,起始状态和最终状态看成图的起点和终点,则我们可以通过bfs来找到一条可行路径。
在中间状态中,无非执行六种操作,fill A,fill B,empty A,empty B,pour A B,pour B A。则我们可以通过bfs,来遍历这六种操作。
对于每一个状态,我们可以通过一个结构体来存储,其中包括A的容量a,B的容量b,以及执行到这一个状态的执行操作,通过一个string类型的变量来记录。并且重载了"=“和"<”,以便于使用stl中的map。
我们使用了stl中的map来对图中的每一个状态进行标记,并且记录该状态的上一个状态。在bfs中,首先要有一步特判终点,如果到达终点,则退出,记录终点的状态。若没有对6种情况进行搜索,对于得到的每一个状态,我们都要使用map中的count操作,来判断该状态存在不存在,若不存在,将其压入队列,并且通过map记录其上一个状态。
输出时,使用vector输出,通过map,将终点的上一个状态找出,这样循环,一直到起始状态,就能找到每一个状态,将其插入vector数组,然后将vector数组进行倒序输出。
解题总结:
对于隐式图问题,只给出了起始和终点两种状态,那么首先我们要考虑中间可能会执行的操作,我们可以想象成中间的每一种状态相当于图的一个节点,那我们就可以使用bfs进行广度优先搜索,直到终点状态为止,这样我们就找到一条从起始到终点状态的一种可行性路径。
代码:
#include<iostream>
#include<queue>
#include<string>
#include<vector>
#include<map>
using namespace std;
struct rest {//用来储存每一种状态
int a;
int b;
string tishi;
rest & operator = (const rest& r) {
a = r.a;
b = r.b;
tishi = r.tishi;
return *this;
}
bool operator < (const rest & r)const {
if (a != r.a) return a < r.a;
return b < r.b;
}
};
queue<rest> store;
void chazhao(int f, int g, int h)
{
map<rest, rest> mm;
rest temp;
rest end;
temp.a = 0;
temp.b = 0;
temp.tishi = "";
store.push(temp);
while (!store.empty())//bfs
{
rest flag = store.front();
store.pop();
if (flag.a == h || flag.b == h) //特判终点
{
end = flag;
break;
}
//六种可能情况
if (flag.a > 0)
{
rest r9;
r9.a = 0;
r9.b = flag.b;
r9.tishi = "empty A";
if (mm.count(r9) == 0) //判断该状态是否存在
{
store.push(r9);
mm[r9] = flag;
}
}
if (flag.b > 0)
{
rest r0;
r0.a = flag.a;
r0.b = 0;
r0.tishi = "empty B";
if (mm.count(r0) == 0)
{
store.push(r0);
mm[r0] = flag;
}
}
if (flag.a < f) {
rest r1;
r1.a = f;
r1.b = flag.b;
r1.tishi = "fill A";
if (mm.count(r1) == 0)
{
store.push(r1);
mm[r1] = flag;
}
if (flag.b != 0)
{
rest r8;
if (flag.a + flag.b > f)
{
r8.a = f;
r8.b = flag.a + flag.b - f;
}
else
{
r8.a = flag.a + flag.b;
r8.b = 0;
}
r8.tishi = "pour B A";
if (mm.count(r8) == 0)
{
store.push(r8);
mm[r8] = flag;
}
}
}
if (flag.b < g)
{
rest r2;
r2.a = flag.a;
r2.b = g;
r2.tishi = "fill B";
if (mm.count(r2) == 0)
{
store.push(r2);
mm[r2] = flag;
}
if (flag.a != 0)
{
rest r7;
if (flag.b + flag.a > g)
{
r7.b = g;
r7.a = flag.a + flag.b - g;
}
else
{
r7.b = flag.a + flag.b;
r7.a = 0;
}
r7.tishi = "pour A B";
if (mm.count(r7) == 0)
{
store.push(r7);
mm[r7] = flag;
}
}
}
}
vector<string> p;
p.push_back("success");
while ((end.a != 0 || end.b != 0)) //将这条成功路径的所有操作存到数组p中
{
p.push_back(end.tishi);
rest tt;
tt = mm[end];
end = tt;
}
for (int i = p.size()-1; i >= 0; i--)
{
cout << p[i] << "\n";
}
while (!store.empty())//清空队列
{
store.pop();
}
}
int main()
{
int A, B, C;
while (cin >> A >> B >> C)
{
chazhao(A, B, C);
}
}