【洛谷】P8774 [蓝桥杯 2022 省 A] 爬树的甲壳虫 的题解
题目传送门
思路
先考虑求从 0 0 0 到 1 1 1 的期望。
有 p 1 p_1 p1 的概率掉落, 1 − p 1 1-p_1 1−p1 的概率向上移动一次。
只走一次上去的期望时间是 1 × ( 1 − p 1 ) 1\times(1-p_1) 1×(1−p1)。
只走两次上去的期望时间是 2 × ( 1 − p 1 ) × p 1 2 \times (1-p_1) \times p_1 2×(1−p1)×p1。
只走三次上去的期望时间是 3 × ( 1 − p 1 ) × p 1 2 3 \times (1-p_1) \times p_1^2 3×(1−p1)×p12。
所以期望时间是 E x ( 1 ) = ∑ i = 1 i × ( 1 − p 1 ) × p 1 i − 1 = ( 1 − p 1 ) × ∑ i = 1 i × p 1 i − 1 E_x(1)=\sum_{i=1}i \times (1-p_1) \times p_1^{i-1}=(1-p_1) \times \sum_{i=1}i \times p_1^{i-1} Ex(1)=∑i=1i×(1−p1)×p1i−1=(1−p1)×∑i=1i×p1i−1。
令 F ( x ) = ∑ i = 1 i × x i − 1 F(x)=\sum_{i=1}i \times x^{i-1} F(x)=∑i=1i×xi−1 则 F ( x ) = ∑ i = 1 ( x i ) ′ = ( ∑ i = 1 x i ) ′ = ( ∑ i = 0 x i ) ′ F(x)=\sum_{i=1}(x^{i})^{'}=(\sum_{i=1}x^{i})^{'}=(\sum_{i=0}x^{i})^{'} F(x)=∑i=1(xi)′=(∑i=1xi)′=(∑i=0xi)′。
显然, F ( x ) F(x) F(x) 是首项为 x x x 的等比数列求和,运用等比数列求和公式可得 F ( x ) = ( 1 − x ∞ 1 − x ) ′ F(x)=(\frac{1-x^\infty}{1-x})^{'} F(x)=(1−x1−x∞)′ 因为 x < 1 x < 1 x<1,所以 F ( x ) = ( 1 1 − x ) ′ = 1 ( 1 − x ) 2 F(x)=(\frac{1}{1-x})^{'}=\frac{1}{(1-x)^2} F(x)=(1−x1)′=(1−x)21。
所以, E x ( 1 ) = ( 1 − p 1 ) × F ( p 1 ) = ( 1 − p 1 ) × 1 ( 1 − p 1 ) 2 = 1 1 − p 1 E_x(1)=(1-p_1) \times F(p_1)=(1-p_1) \times \frac{1}{(1-p_1)^2}=\frac{1}{1-p_1} Ex(1)=(1−p1)×F(p1)=(1−p1)×(1−p1)21=1−p11。
那么从 n − 1 n-1 n−1 到 n n n 的期望时间分析如下:
-
一次上去的期望时间是 E x ( n − 1 ) + 1 ) × ( 1 − p n ) E_x(n-1)+1) \times (1-p_n) Ex(n−1)+1)×(1−pn)
-
两次上去的期望时间是 2 × ( E x ( n − 1 ) + 1 ) ) × ( 1 − p n ) × p n 2 \times(E_x(n-1)+1))\times(1-p_n) \times p_n 2×(Ex(n−1)+1))×(1−pn)×pn (理解为第一次掉下去,第二次上去)。
-
三次上去的期望时间是 3 × ( E x ( n − 1 ) + 1 ) ) × ( 1 − p n ) × p n 2 3\times(E_x(n-1)+1)) \times (1-p_n) \times p_n^2 3×(Ex(n−1)+1))×(1−pn)×pn2 (理解为前两次掉下去,第三次上去)。
那么,同理可得 E x ( n ) = ( E x ( n − 1 ) + 1 ) × ( 1 − p n ) × ∑ i = 1 i × p n i − 1 = ( E x ( n − 1 ) + 1 ) × 1 1 − p n E_x(n)=(E_x(n-1)+1) \times (1-p_n) \times \sum_{i=1}i \times p_n^{i-1}=(E_x(n-1)+1) \times \frac{1}{1-p_n} Ex(n)=(Ex(n−1)+1)×(1−pn)×∑i=1i×pni−1=(Ex(n−1)+1)×1−pn1。
即得到递推式 E x ( n ) = ( E x ( n − 1 ) + 1 ) × 1 1 − p n E_x(n)=(E_x(n-1)+1) \times \frac{1}{1-p_n} Ex(n)=(Ex(n−1)+1)×1−pn1。
即 E x ( n ) = ( E x ( n − 1 ) + 1 ) × y i y i − x i E_x(n)=(E_x(n-1)+1) \times \frac{y_i}{y_i-x_i} Ex(n)=(Ex(n−1)+1)×yi−xiyi。
对于除以 ( y i − x i ) (y_i-x_i) (yi−xi) 在 m o d P \bmod \space P mod P 的意义下等价于乘以 ( y i − x i ) − 1 (y_i-x_i)^{-1} (yi−xi)−1,由于 P P P 为质数,根据费马小定理,运用快速幂求逆元。
代码
#include <bits/stdc++.h>
#define endl "\n"
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
namespace fastIO {
inline int read() {
register int x = 0, f = 1;
register char c = getchar();
while (c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while (c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
inline void write(int x) {
if(x < 0) putchar('-'),x = -x;
if(x > 9) write(x / 10);
putchar(x % 10 + '0');
return;
}
}
using namespace fastIO;
const ll Mod = 998244353ll;
int n;
ll ans = 0;
ll fast_pow(ll x, ll y) {
ll re = 1ll;
while(y) {
if(y & 1ll) re = re * x % Mod;
x = x * x % Mod;
y >>= 1;
}
return re;
}
int main() {
//freopen(".in","r",stdin);
//freopen(".out","w",stdout);
ll x, y;
n = read();
for(ll i = 1ll; i <= n; i ++) {
scanf("%lld%lld", &x, &y);
ans = (ans + 1ll) * y % Mod * fast_pow(y - x, Mod - 2ll) % Mod;
ans = (ans + Mod) % Mod;
}
printf("%lld", ans);
return 0;
}