【洛谷】P8774 [蓝桥杯 2022 省 A] 爬树的甲壳虫 的题解

文章详细解析了蓝桥杯2022省A题【爬树的甲壳虫】的解题思路,主要涉及数学期望的计算。首先,从0到1的期望时间通过等比数列求和公式得出,然后通过递推关系推导出从n-1到n的期望时间,最后利用快速幂计算模意义下的逆元以优化算法效率。
摘要由CSDN通过智能技术生成

【洛谷】P8774 [蓝桥杯 2022 省 A] 爬树的甲壳虫 的题解

题目传送门

思路

先考虑求从 0 0 0 1 1 1 的期望。

p 1 p_1 p1 的概率掉落, 1 − p 1 1-p_1 1p1 的概率向上移动一次。

只走一次上去的期望时间是 1 × ( 1 − p 1 ) 1\times(1-p_1) 1×(1p1)

只走两次上去的期望时间是 2 × ( 1 − p 1 ) × p 1 2 \times (1-p_1) \times p_1 2×(1p1)×p1

只走三次上去的期望时间是 3 × ( 1 − p 1 ) × p 1 2 3 \times (1-p_1) \times p_1^2 3×(1p1)×p12

所以期望时间是 E x ( 1 ) = ∑ i = 1 i × ( 1 − p 1 ) × p 1 i − 1 = ( 1 − p 1 ) × ∑ i = 1 i × p 1 i − 1 E_x(1)=\sum_{i=1}i \times (1-p_1) \times p_1^{i-1}=(1-p_1) \times \sum_{i=1}i \times p_1^{i-1} Ex(1)=i=1i×(1p1)×p1i1=(1p1)×i=1i×p1i1

F ( x ) = ∑ i = 1 i × x i − 1 F(x)=\sum_{i=1}i \times x^{i-1} F(x)=i=1i×xi1 F ( x ) = ∑ i = 1 ( x i ) ′ = ( ∑ i = 1 x i ) ′ = ( ∑ i = 0 x i ) ′ F(x)=\sum_{i=1}(x^{i})^{'}=(\sum_{i=1}x^{i})^{'}=(\sum_{i=0}x^{i})^{'} F(x)=i=1(xi)=(i=1xi)=(i=0xi)

显然, F ( x ) F(x) F(x) 是首项为 x x x 的等比数列求和,运用等比数列求和公式可得 F ( x ) = ( 1 − x ∞ 1 − x ) ′ F(x)=(\frac{1-x^\infty}{1-x})^{'} F(x)=(1x1x) 因为 x < 1 x < 1 x<1,所以 F ( x ) = ( 1 1 − x ) ′ = 1 ( 1 − x ) 2 F(x)=(\frac{1}{1-x})^{'}=\frac{1}{(1-x)^2} F(x)=(1x1)=(1x)21

所以, E x ( 1 ) = ( 1 − p 1 ) × F ( p 1 ) = ( 1 − p 1 ) × 1 ( 1 − p 1 ) 2 = 1 1 − p 1 E_x(1)=(1-p_1) \times F(p_1)=(1-p_1) \times \frac{1}{(1-p_1)^2}=\frac{1}{1-p_1} Ex(1)=(1p1)×F(p1)=(1p1)×(1p1)21=1p11

那么从 n − 1 n-1 n1 n n n 的期望时间分析如下:

  • 一次上去的期望时间是 E x ( n − 1 ) + 1 ) × ( 1 − p n ) E_x(n-1)+1) \times (1-p_n) Ex(n1)+1)×(1pn)

  • 两次上去的期望时间是 2 × ( E x ( n − 1 ) + 1 ) ) × ( 1 − p n ) × p n 2 \times(E_x(n-1)+1))\times(1-p_n) \times p_n 2×(Ex(n1)+1))×(1pn)×pn (理解为第一次掉下去,第二次上去)。

  • 三次上去的期望时间是 3 × ( E x ( n − 1 ) + 1 ) ) × ( 1 − p n ) × p n 2 3\times(E_x(n-1)+1)) \times (1-p_n) \times p_n^2 3×(Ex(n1)+1))×(1pn)×pn2 (理解为前两次掉下去,第三次上去)。

那么,同理可得 E x ( n ) = ( E x ( n − 1 ) + 1 ) × ( 1 − p n ) × ∑ i = 1 i × p n i − 1 = ( E x ( n − 1 ) + 1 ) × 1 1 − p n E_x(n)=(E_x(n-1)+1) \times (1-p_n) \times \sum_{i=1}i \times p_n^{i-1}=(E_x(n-1)+1) \times \frac{1}{1-p_n} Ex(n)=(Ex(n1)+1)×(1pn)×i=1i×pni1=(Ex(n1)+1)×1pn1

即得到递推式 E x ( n ) = ( E x ( n − 1 ) + 1 ) × 1 1 − p n E_x(n)=(E_x(n-1)+1) \times \frac{1}{1-p_n} Ex(n)=(Ex(n1)+1)×1pn1

E x ( n ) = ( E x ( n − 1 ) + 1 ) × y i y i − x i E_x(n)=(E_x(n-1)+1) \times \frac{y_i}{y_i-x_i} Ex(n)=(Ex(n1)+1)×yixiyi

对于除以 ( y i − x i ) (y_i-x_i) (yixi)   m o d     P \bmod \space P mod P 的意义下等价于乘以 ( y i − x i ) − 1 (y_i-x_i)^{-1} (yixi)1,由于 P P P 为质数,根据费马小定理,运用快速幂求逆元。

代码

#include <bits/stdc++.h>
#define endl "\n"
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
namespace fastIO {
	inline int read() {
		register int x = 0, f = 1;
		register char c = getchar();
		while (c < '0' || c > '9') {
			if(c == '-') f = -1;
			c = getchar();
		}
		while (c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
		return x * f;
	}
	inline void write(int x) {
		if(x < 0) putchar('-'),x = -x;
		if(x > 9) write(x / 10);
		putchar(x % 10 + '0');
		return;
	}
}
using namespace fastIO;
const ll Mod = 998244353ll;
int n;
ll ans = 0;
ll fast_pow(ll x, ll y) {
	ll re = 1ll;
	while(y) {
		if(y & 1ll) re = re * x % Mod;
		x = x * x % Mod;
		y >>= 1;
	}
	return re;
}
int main() {
	//freopen(".in","r",stdin);
	//freopen(".out","w",stdout);
	ll x, y;
	n = read();
	for(ll i = 1ll; i <= n; i ++) {
		scanf("%lld%lld", &x, &y);
		ans = (ans + 1ll) * y % Mod * fast_pow(y - x, Mod - 2ll) % Mod;
		ans = (ans + Mod) % Mod;
	}
	printf("%lld", ans);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值