AT_abc219_d [ABC219D] Strange Lunchbox 的题解

AT_abc219_d [ABC219D] Strange Lunchbox 的题解

洛谷传送门
AT传送门

思路

第一眼看出是一道动态规划,只不过限制状态有两层。

d p i , j , k \mathit{dp}_{i,j,k} dpi,j,k 表示前 i i i 个物品第一个约束条件取 j j j 个第二个约束条件取 k k k 个的最小方案。

然后可以仿照背包问题将 i i i 那一维给删掉,其实删不删空间都够。

注意这里是至少,因此转移方程为 d p i , j = min ⁡ ( d p i , j , d p max ⁡ ( 0 , j − a i . x ) , max ⁡ ( 0 , k − a i . y ) + 1 ) \mathit{dp}_{i,j}=\min(\mathit{dp}_{i,j},\mathit{dp}_{\max(0,j-a_{i}.x),\max(0,k-a_{i}.y)}+1) dpi,j=min(dpi,j,dpmax(0,jai.x),max(0,kai.y)+1)

代码

#include <bits/stdc++.h>
#define lowbit(x) x & (-x)
#define endl "\n"
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
namespace fastIO {
	inline int read() {
		register int x = 0, f = 1;
		register char c = getchar();
		while (c < '0' || c > '9') {
			if(c == '-') f = -1;
			c = getchar();
		}
		while (c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
		return x * f;
	}
	inline void write(int x) {
		if(x < 0) putchar('-'), x = -x;
		if(x > 9) write(x / 10);
		putchar(x % 10 + '0');
		return;
	}
}
using namespace fastIO;
int n, ft, sd, sum1 = 0, sum2 = 0, f[355][355];
pair<int, int> a[355];
int main() {
	//freopen(".in","r",stdin);
	//freopen(".out","w",stdout);
    n = read(), ft = read(), sd = read();
    for(int i = 1; i <= n;i ++) {
    	a[i].first = read(), a[i].second = read();
    	sum1 += a[i].first, sum2 += a[i].second;
    }
    if(sum1 < ft || sum2 < sd) {
    	puts("-1");	
	}
    else {
    	memset(f, 0x3f, sizeof(f));
    	f[0][0] = 0;
    	for(int i = 1; i <= n; i ++) {
    		for(int j = 300; j >= 0; j --) {
    			for(int k = 300; k >= 0;k --) {
    				f[j][k] = min(f[j][k], f[max(0, j - a[i].first)][max(0, k - a[i].second)] + 1);
    			}
			}
		}		
    	int ans = 0x3f3f3f3f;
    	for(int i = ft; i <=300; i ++) {
    		for(int j = sd; j <= 300; j ++) {
    			ans = min(ans, f[i][j]);
			}
		}	
    	write(ans);
    }    
	return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值