C.进程调度

Description


操作系统的一个重要功能是进行进程调度,其进程调度的算法有多种,其中最简单的调度算法是先来先服务(FCFS)算法。该算法的思想是:先进入就绪队列的先执行,后进入就绪队列的后执行,同一时刻进入就绪队列的执行时间少的先执行。我们认为某一进程一旦开始执行,就一直占用处理机,直到执行结束。而一旦处理机被其它进程占用,就绪队列中的进程就必须等待。当某一进程执行结束后,队列中排在最前面的进程就会立即执行。一个进程从进入就绪队列到执行完毕所用的时间为其周转时间,即周转时间=等待时间+执行时间。现在给你若干进程到达就绪队列的时间以及每个队列的执行时间,请编程计算这些进程的平均周转时间。



Input


多组测试数据。

每组测试数据的第一行为一个正整数NN<=1000,表示要处理的进程数目。

接下来有N行,每行有两个正整数AiAi<=1000EiEi<=1000,分别表示一个进程到达就绪队列的时刻和执行该进程所需的时间。


Output


对于每组测试数据,输出平均周转时间,结果保留4位小数。
每组输出占一行。


Sample Input


4
1 1
3 3
2 2
4 4

Sample Output


3.5000

Hint


进程1等待时间为0,执行时间为1,其周转时间为0+1=1;

进程3等待时间为0,执行时间为2,其周转时间为0+2=2;

进程2等待时间为1,执行时间为3,其周转时间为1+3=4;

进程4等待时间为3,执行时间为4,其周转时间为3+4=7;

故平均周转时间=(1+2+4+7)/4=3.5000。


Source


2013 Anhui College Student Programming Contest--ahfywff

# include <stdio.h>
# define M 1000
# define N 2
void Dsort(int *tree[],int n);
int A[M][N],*P[M];
int main()
{
    int n,i,time0=0,time1=0,sum;
    //freopen("AAA.txt","r",stdin);
    while(~scanf("%d",&n))
    {
    for(i=0;i<n;P[i]=A[i],i++)
        scanf("%d %d",&A[i][0],&A[i][1]);
    Dsort(P,n);
    time1=P[0][0]+P[0][1];
    time0=0;
    sum=P[0][1];
    //printf("%d %d %lld\n",time0,time1,sum);
    for(i=1;i<n;i++)
    {
        if(P[i][0]<time1)time0=time1-P[i][0];
        else
        {
            time0=0;//time0=当前进程-时间点=等待时间
            time1=P[i][0];
        }
        time1+=P[i][1];//当前进程结束后的时间点
        sum+=time0+P[i][1];
        //printf("%d %d %lld\n",time0,time1,sum);
    }
    printf("%.4lf\n",sum*1.0/n);
    }
    return 0;
}
void Dsort(int *tree[],int n)
{
    int i,j=0,k,L,*R;
    tree--;
    while((i=++j)<=n)
    {
        R=tree[i];
        while(i>1)
        {
            L=(i>>1);
            for(k=0; k<N&&tree[L][k]==R[k]; k++);
            if(tree[L][k]>=R[k]) break;
            tree[i]=tree[L];
            i=L;
        }
        tree[i]=R;
    }
    while(n)
    {
        R=tree[n];
        tree[n--]=tree[1];
        i=1;
        L=2;
        while(L<=n)
        {
            if(L<n)
            {
                for(k=0; k<N&&tree[L+1][k]==tree[L][k]; k++);
                if(tree[L+1][k]>tree[L][k])L++;
            }
            for(k=0; k<N&&tree[L][k]==R[k]; k++);
            if(tree[L][k]<=R[k]) break;
            tree[i]=tree[L];
            i=L;
            L<<=1;
        }
        tree[i]=R;
    }
    tree++;
}

阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/zhagoodwell/article/details/79955781
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭