数学知识-三角函数公式大全(值得收藏)

本文档详细整理了光学研究中常用的三角函数转换公式,包括两角和、倍角、三倍角、半角、和差化积、积化和差等,便于查阅和复习。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:翟天保Steven
版权声明:著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处

       最近研究光学方面的技术常用到一些三角函数转换公式,虽然都是高中的知识了,但是太久远基本都忘了,所以写个博客记录下常用的公式,也方便大家查阅。

1.两角和公式

\begin{aligned} \sin (A+B) &=\sin A \cos B+\cos A \sin B \\ \sin (A-B) &=\sin A \cos B-\cos A \sin B \\ \cos (A+B) &=\cos A \cos B-\sin A \sin B \\ \cos (A-B) &=\operatorname{cosAcosB}+\sin A \sin B \\ \tan (A+B) &=(\tan A+\operatorname{tanB}) /(1-\tan A \tan B) \\ \tan (A-B) &=(\tan A-\operatorname{tanB}) /(1+\tan A \operatorname{tanB}) \\ \cot (A+B) &=(\cot A \cot B-1) /(\operatorname{cotB}+\cot A) \\ \cot (A-B) &=(\cot A \cot B+1) /(\cot B-\cot A) \end{aligned}

2.倍角公式

\begin{array}{l} \sin 2 \alpha=2 \sin \alpha \cos \alpha \\ \cos 2 \alpha=\cos ^{2} \alpha-\sin ^{2} \alpha=2 \cos ^{2} \alpha-1=1-2 \sin ^{2} \alpha \\ \tan 2 \alpha=(2 \tan \alpha)/(1-\tan ^{2} \alpha) \\ \cot 2 \alpha=(cot ^{2} \alpha-1)/(2 \cot \alpha) \\ \sec 2 \alpha=(sec ^{2} \alpha+\csc ^{2} \alpha)/(\csc ^{2} \alpha-\sec ^{2} \alpha)=(\sec ^{2} \alpha \csc ^{2} \alpha)/(\csc ^{2} \alpha-\sec ^{2} \alpha) \\ \csc 2 \alpha=(sec ^{2} \alpha+\csc ^{2} \alpha)/(2 \sec \alpha \csc \alpha)=sec \alpha \csc \alpha/{2} \end{array}

3.三倍角公式

\begin{array}{l} \sin 3 \alpha=3 \sin \alpha-4 \sin ^{3} \alpha \\ \cos 3 \alpha=-3 \cos \alpha+4 \cos ^{3} \alpha \\ \tan 3 \alpha=\frac{3 \tan \alpha-\tan ^{3} \alpha}{1-3 \tan ^{2} \alpha}=\tan \alpha \tan \left(\frac{\pi}{3}+\alpha\right) \tan \left(\frac{\pi}{3}-\alpha\right) \\ \cot 3 \alpha=\frac{-3 \cot \alpha+\cot ^{3} \alpha}{3 \cot ^{2} \alpha-1} \end{array}

4.半角公式

\begin{array}{l} \sin \frac{\alpha}{2}=\pm \sqrt{\frac{1-\cos \alpha}{2}} \\ \cos \frac{\alpha}{2}=\pm \sqrt{\frac{1+\cos \alpha}{2}} \\ \tan \frac{\alpha}{2}=\frac{\sin \alpha}{1+\cos \alpha}=\frac{1-\cos \alpha}{\sin \alpha}=\pm \sqrt{\frac{1-\cos \alpha}{1+\cos \alpha}} \end{array}

5.和差化积

\begin{array}{l} \sin (a)+\sin (b)=2 \sin [(a+b) / 2] \cos [(a-b) / 2] \\ \sin (a)-\sin (b)=2 \cos [(a+b) / 2] \sin [(a-b) / 2] \\ \cos (a)+\cos (b)=2 \cos [(a+b) / 2] \cos [(a-b) / 2] \\ \cos (a)-\cos (b)=-2 \sin [(a+b) / 2] \sin [(a-b) / 2] \\ \tan A+\tan B=\sin (A+B) / \cos A \cos B \end{array}

6.积化和差

\begin{aligned} \sin (a) \sin (b) &=-1 / 2 *[\cos (a+b)-\cos (a-b)] \\ \cos (a) \cos (b) &=1 / 2 *[\cos (a+b)+\cos (a-b)] \\ \sin (a) \cos (b) &=1 / 2 *[\sin (a+b)+\sin (a-b)] \\ \cos (a) \sin (b) &=1 / 2 *[\sin (a+b)-\sin (a-b)] \end{aligned}

7.诱导公式

\begin{array}{l} \sin (-a)=-\sin (a) \\ \cos (-a)=\cos (a) \\ \sin (\pi / 2-a)=\cos (a) \\ \cos (\pi / 2-a)=\sin (a) \\ \sin (\pi / 2+a)=\cos (a) \\ \cos (\pi / 2+a)=-\sin (a) \\ \sin (\pi-a)=\sin (a) \\ \cos (\pi-a)=-\cos (a) \\ \sin (\pi+a)=-\sin (a) \\ \cos (\pi+a)=-\cos (a) \\ \operatorname{tg} A=\tan A=\sin A / \cos A \end{array}

8.万能公式

\begin{aligned} \sin (a) &=[2 \tan (a / 2)] \quad / \quad\left\{1+[\tan (a / 2)]^{\wedge} 2\right\} \\ \cos (a) &=\left\{1-[\tan (a / 2)]^{\wedge} 2\right\} /\left\{1+[\tan (a / 2)]^{\wedge} 2\right\} \\ \tan (a) &=[2 \tan (a / 2)] /\left\{1-[\tan (a / 2)]^{\wedge} 2\right\} \end{aligned}

9.其他三角函数

\begin{array}{l} \csc (a)=1 / \sin (a) \\ \sec (a)=1 / \cos (a) \end{array}

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

翟天保Steven

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值