2024 年:从0开始学习 AI的完整指南
基础数学:线性代数、微积分、概率、微分方程
基本统计数据:
统计学
数学
编程(python)
数据结构
数据操作:ai模型
数据科学
机器学习
深度学习
ai工具和软件包
顶级python ai工具包:pandas
numpy、scikit-learn、pycaret、pytorch、keras、openai、hugging face、langchain
AI 学习计划示例
下面,我们制定了一个潜在的学习计划,概述了如果您刚刚开始使用 AI,应该将时间和精力集中在何处。请记住,时间表、学科领域和进度都取决于广泛的变量。我们希望使这个计划尽可能实用和实用,这就是为什么我们推荐了你可以随着你的进展而进行的项目。
第 1-3 个月:数学、编程、数据结构和操作的基础知识
数学和统计学:从线性代数、微积分、统计学和概率的基础知识开始。这将为你的未来打下坚实的基础。
编程:学习 Python,这是 AI 中使用最广泛的语言。从基础知识开始,然后转向更高级的概念。参加我们的 Python 基础技能跟踪和使用 Python 技能跟踪的数据操作,涵盖基本内容,包括 NumPy 等包。
数据操作:开始学习数据操作和分析。熟悉 pandas 和 NumPy 等 Python 库,您将使用它们进行数据操作。了解如何清理和准备数据,这是任何 AI 或机器学习项目的关键部分。
第 4-6 个月:深入了解 AI 和机器学习
4. 人工智能基础知识:了解人工智能是什么、它的历史和它的不同分支。像我们的“了解人工智能”这样的课程可以提供一个良好的开端。
5. 加深机器学习知识:了解不同类型的机器学习算法——监督学习、无监督学习、半监督学习和强化学习。以我们的 Machine Learning Scientist with Python Track 为例,它涵盖了最重要的模型类型、模型验证和超参数优化。它涵盖了包括 TensorFlow 和 Keras 在内的软件包,并涉及高级深度学习。
推荐资源和项目
第 7-9 个月:专业化和高级主题
深度学习:了解神经网络和深度学习。
MLOps 基础知识:了解 MLOps,即将 DevOps 原则应用于机器学习系统。这包括模型版本控制、模型部署、监视和业务流程。
专业化:根据您的兴趣和职业抱负,专注于一个领域 - 它可以是自然语言处理、计算机视觉、强化学习或任何其他领域。
第 10 个月-持续:不断学习和探索
进一步专业化:在职业道路上走下坡路
保持最新状态:定期关注与 AI 相关的博客、播客和期刊。加入社区,与其他 AI 从业者交流想法。
人工智能伦理:随着您对 AI 的了解越来越多,请务必了解 AI 中的道德考虑因素。
请记住,这只是一个基本的路线图。您应该根据自己的节奏和兴趣对其进行修改。人工智能是一个广阔的领域,学习是一个持续的过程。
学习 AI 的 5 大技巧
踏上学习 AI 的旅程可能令人生畏,但拥有战略方法可以使流程更加结构化和易于管理。以下是指导您完成 AI 学习之旅的五个步骤:
- 选择你的重点
首先根据你的职业目标决定你的工作重点。在本文中,我们将进一步讨论人工智能的各种职业;每个角色都有不同的重点,需要独特的技能。
例如,如果你对数据科学家或机器学习工程师等应用性更强的角色感兴趣,请更多地关注编程、数据科学和理解各种机器学习算法。您在这里的目标是熟练使用人工智能技术来解决现实世界的问题。
或者,如果你倾向于从事研究工作,你应该更深入地研究人工智能和机器学习背后的理论。您需要扎实掌握数学、统计学和理论计算机科学。
这不是一个严格的区别;相反,它是帮助您决定将初始重点放在哪里的起点。 - 开始学习
一旦你决定了你的重点,就该开始学习了。技能部分建议的学习资源和上面的 AI 学习计划是有用的起点。请记住,掌握人工智能是一场马拉松,而不是短跑。在继续下一个概念之前,请花时间彻底理解每个概念。 - 将你的技能应用到项目中
没有比实践更好的学习方式了。将你学到的技能应用到现实世界的项目中,可以巩固你的理解,并给你实践经验,丰富你的投资组合。这可以像创建机器学习模型来预测房价一样简单,也可以像开发用于图像识别的深度学习模型一样复杂。我们在本文中包含了示例项目。 - 加入社区
加入线上和线下的 AI 社区。参加Stack Overflow或GitHub等论坛,在LinkedIn上加入AI小组,或参加AI聚会和会议,都可以提供宝贵的学习机会。
通过加入社区,您可以随时了解最新趋势,在遇到困难时获得帮助,并与其他 AI 爱好者建立联系。
5.不断迭代
人工智能是一个快速发展的领域。一旦你掌握了基础知识,不断学习和提高你的技能是很重要的。关注 AI 博客、阅读研究论文、参加高级课程,并始终寻找挑战自己的新方法。这个迭代过程将把你从一个新手变成一个专家。
请记住,学习 AI 的旅程充满挑战,但回报丰厚。如果途中遇到障碍,不要气馁;它们是学习过程的一部分。牢记您的最终目标,并致力于您的旅程。
2024 年学习 AI 的最佳方式
从结构化课程和教科书到动手项目,有丰富的资源可以帮助您学习 AI。选择正确的资源可以帮助您在 AI 学习中有一个良好的开端。
完成 AI 项目
学习人工智能是一个超越理解理论和编码技术的旅程。它涉及动手实践,这就是完成 AI 项目的用武之地。
首先根据您的熟练程度确定合适的项目,无论是预测模型还是生成式 AI 应用程序。正确的工具,如 Python 及其广泛的库,将成为您的基石。理解和准备数据至关重要,因为它直接影响模型的有效性。
以下是您可以构建的 AI 项目的一些想法,以帮助您掌握 AI。请务必查看我们关于所有级别的 AI 项目、生成式 AI 项目和所有级别的机器学习项目的文章,以获取更多信息。
当今人工智能领域的不同职业
人工智能开辟了许多职业道路,每条道路都有独特的职责、工具和所需的技能。让我们深入研究目前流行的三个人工智能职业:数据科学家、机器学习工程师和研究科学家。请注意,我们将提到他们需要掌握的一些工具;如果您不熟悉这些工具,那完全没关系,我们将在后面的章节中更详细地介绍它们。
数据科学家
数据科学家调查、提取和报告对组织数据的有意义的见解。他们将这些见解传达给非技术利益相关者,并充分了解机器学习工作流以及如何将它们与业务应用程序联系起来。他们几乎只使用编码工具,进行分析,并且经常使用大数据工具。
数据科学家是数据世界的侦探,负责挖掘和解释丰富的数据源,管理大量数据,并合并数据点以识别趋势。他们利用自己的分析、统计和编程技能来收集、分析和解释大型数据集。然后,他们使用这些信息来开发数据驱动的解决方案,以解决具有挑战性的业务问题。这些解决方案的一部分是开发机器学习算法,以产生新的见解(例如,识别客户群),自动化业务流程(例如,信用评分预测),或为客户提供新发现的价值(例如,推荐系统)。
关键技能:
熟悉 Python、R 和 SQL
了解机器学习和 AI 概念
熟练掌握统计分析、定量分析和预测建模
数据可视化和报告技术
有效的沟通和演讲技巧
基本工具:
数据分析工具(例如,Pandas、NumPy)
机器学习库(例如,Scikit-learn)
数据可视化工具(例如 Matplotlib、Tableau)
大数据框架(例如,Airflow、Spark)
命令行工具(例如 Git、Bash)
机器学习工程师
机器学习工程师是人工智能世界的架构师。他们设计和部署机器学习系统,根据组织的数据进行预测。它们还可以解决诸如预测客户流失和生命周期价值等问题,以及
负责部署供组织使用的模型。机器学习工程师通常只使用基于编码的工具。
关键技能:
对 Python、Java 和 Scala 有深入的了解
熟悉机器学习框架(如 Scikit-learn、Keras 或 PyTorch)
了解数据结构、数据建模和软件架构
高级数学技能(线性代数、微积分、统计学)
团队合作能力和出色的解决问题的能力
工具:
机器学习库和算法(例如,Scikit-learn、TensorFlow)
数据科学库(例如 Pandas、NumPy)
云平台(例如 AWS、Google Cloud Platform)
版本控制系统(例如,Git)
研究科学家
研究科学家是人工智能世界的思想家。他们进行前沿研究,以推进人工智能的最新技术。他们的工作通常涉及发明新算法或改进现有算法。他们还在人工智能会议和学术文章中展示他们的发现。
关键技能:
对机器学习和深度学习有深入的了解
熟练掌握 Python 和其他编程语言
广泛了解与人工智能相关的数学理论(如统计学习理论)
能够概念化和验证新型 AI 模型
较强的写作和公开演讲技巧
工具:
深度学习框架(如 TensorFlow、PyTorch)
科学计算工具(如 MatLab、Mathematica)
用于写作和演示的软件(如 LaTeX、Google 幻灯片)
云计算资源(如 AWS、Google Cloud Platform)
数据科学家 机器学习工程师 研究科学家
这是什么? 从数据中提取并报告有意义的见解,以解决业务问题。 设计和部署机器学习系统,根据数据进行预测。 开展研究以推进人工智能的最新技术。发布调查结果。
关键技能 从数据中提取并报告有意义的见解,以解决业务问题。 Python、Java、Scala、ML 框架、数据结构、软件架构、数学、团队合作、解决问题 机器学习、深度学习、编程、人工智能相关数学、概念化、写作、公开演讲
工具 Pandas、NumPy、Scikit-learn、Matplotlib、Tableau、Airflow、Spark、Git、Bash Scikit-learn、TensorFlow、Pandas、NumPy、AWS、Google Cloud Platform、Git TensorFlow、PyTorch、MatLab、Mathematica、LaTeX、Google Slides、AWS、Google Cloud Platform
这些职业中的每一个都提供了进入人工智能世界的独特途径。他们都具有巨大的潜力,并在该领域发挥着关键作用。你的决定将取决于你的兴趣、优势和长期的职业目标。
如何在人工智能领域找到工作
在开始人工智能职业生涯时,学位可能是一笔巨大的财富,但这并不是唯一的途径。虽然我们确实认为在人工智能或邻近领域接受正规教育是值得的,但越来越多的专业人士正在通过非传统途径进入该领域,证明通过奉献精神、持续学习和积极主动的方法,你可以在人工智能领域找到你梦想的工作。
以下是如何在没有学位的情况下找到 AI 工作:
持续了解该领域
随时了解 AI 的最新发展。在 Twitter 上关注有影响力的 AI 专业人士,阅读 AI 研究论文,并收听与 AI 相关的播客,包括
开发投资组合
展示您的技能和项目的强大作品集可以使您从其他候选人中脱颖而出。更重要的是,一个试图解决现实世界问题的项目会给招聘经理留下深刻印象。
正如 Ace the Data Science Interview 的作者 Nick Singh 在 DataFramed Careers Series 播客中所说,
脱颖而出的关键是表明您的项目产生了影响,并表明其他人关心。为什么我们从事数据工作?我们试图找到真正影响企业的见解,或者我们试图找到能够真正塑造社会或创造新事物的见解。我们正在努力提高盈利能力或改善人们的生活,使用和分析数据,所以如果你不以某种方式量化影响,那么你就缺乏影响力。
尼克·辛格(Nick Singh),《Ace the Data Science Interview》一书的合著者
制作一份有效的简历
在当今的数字时代,您的简历不仅仅是由人眼阅读;它还必须通过申请人跟踪系统 (ATS)。这些是许多公司用来过滤不符合某些标准的简历的自动化软件。因此,将您的简历定制为对 ATS 友好,同时仍能吸引招聘经理的眼球至关重要。
根据 DataCamp 前职业服务主管 Jen Bricker 的说法:
60% 到 70% 的应用程序在人类实际查看应用程序之前就被排除在考虑范围之外。
Jen Bricker,DataCamp 前职业服务主管
因此,尽可能有效地构建简历非常重要。您可以在另一篇文章中阅读有关构建出色的数据科学家简历的更多信息。
引起招聘经理的注意
在社交平台上积极主动有助于吸引招聘经理的注意。
如果你想被看到,那么你必须分享你的作品。我喜欢用的比喻是音乐盒。如果你曾经见过一个音乐盒,当它关闭并坐在桌子上时,你永远不会真正听到里面的美妙声音。对于缺乏沟通技巧的数据科学家来说,情况类似。他们可能拥有这些惊人的技能,但他们都被锁在这个盒子里,没有人知道他们。你必须打开盒子,通过能够讲述这些故事并传达这些技能来做到这一点。所以,这真的取决于你。你想让人们听到你的故事,体验你惊人的技能和能力吗?然后你将需要沟通技巧,这样你才能打开你的盒子。
Sadie St. Lawrence,Women in Data 首席执行官
请记住,闯入 AI 需要毅力、持续学习和耐心。但通过这些步骤,您正在为成功做好准备。祝你的 AI 之旅好运!
如何掌握 AI 商业工具
虽然本文主要侧重于有抱负的 AI 从业者对 AI 的深入了解,但对于商业专业人士来说,熟悉 AI 工具同样重要。ChatGPT 等生成式 AI 工具正日益成为各种业务运营不可或缺的一部分。
此外,正如埃森哲全球人工智能解决方案、生成式人工智能和法学硕士行业负责人
像 ChatGPT 这样的大型语言模型正在彻底改变我们与软件交互的方式。无论是客户服务、项目管理还是数据分析,这些 AI 工具都在提高所有部门的效率、准确性和生产力。
Noelle Silver Russel,埃森哲全球人工智能解决方案、生成式人工智能和法学硕士行业负责人
了解有关生成式 AI 的更多信息
首先,熟悉您可以使用的不同 AI 工具。有广泛的工具专为各种业务功能而设计,例如营销、销售、客户服务和数据分析。探索 AI 工具环境并了解每个工具的功能。它们如何使您的角色或业务受益?
例如,考虑我们的 ChatGPT 简介课程,该课程提供了对这种强大的生成式 AI 工具的全面了解。我们还有生成式人工智能概念课程的介绍,其中还涵盖了一系列其他工具。
在工作中应用生成式 AI 工具
一旦你了解了人工智能工具,下一步就是在你的日常工作流程中应用它们。无论您是想自动化数据分析、改善客户交互还是简化业务流程,AI 工具都可以使您、您的团队和更广泛的组织受益。
应用人工监督
虽然人工智能工具非常有用,但它们并非万无一失。查看和编辑这些工具生成的输出非常重要。了解它们的局限性并相应地调整它们的使用。请记住,这些工具旨在为您提供帮助,而不是取代您的决策。了解人工智能的伦理至关重要。
在商业中掌握人工智能工具不仅仅是理解技术;这是关于知道如何有效地利用它们来推动您的角色和业务的成功。通过学习、应用和改进它们的使用,您可以在 AI 驱动的商业世界中保持领先地位。
结论
学习人工智能是一项有益的追求,它打开了通往创新技术和令人兴奋的职业机会世界的大门。通过这一过程获得的知识和专长超越了教科书和讲座。它涉及学习、应用、实验和改进的动态循环。采用实践方法,特别是通过课程和人工智能项目,可以加速学习并培养解决问题、批判性思维和创造力的基本技能。