# 给你一个整数数组 bloomDay,以及两个整数 m 和 k 。
#
# 现需要制作 m 束花。制作花束时,需要使用花园中 相邻的 k 朵花 。
#
# 花园中有 n 朵花,第 i 朵花会在 bloomDay[i] 时盛开,恰好 可以用于 一束 花中。
#
# 请你返回从花园中摘 m 束花需要等待的最少的天数。如果不能摘到 m 束花则返回 -1 。
#
#
#
# 示例 1:
#
# 输入:bloomDay = [1,10,3,10,2], m = 3, k = 1
# 输出:3
# 解释:让我们一起观察这三天的花开过程,x 表示花开,而 _ 表示花还未开。
# 现在需要制作 3 束花,每束只需要 1 朵。
# 1 天后:[x, _, _, _, _] // 只能制作 1 束花
# 2 天后:[x, _, _, _, x] // 只能制作 2 束花
# 3 天后:[x, _, x, _, x] // 可以制作 3 束花,答案为 3
#
#
# 示例 2:
#
# 输入:bloomDay = [1,10,3,10,2], m = 3, k = 2
# 输出:-1
# 解释:要制作 3 束花,每束需要 2 朵花,也就是一共需要 6 朵花。而花园中只有 5 朵花,无法满足制作要求,返回 -1 。
#
#
# 示例 3:
#
# 输入:bloomDay = [7,7,7,7,12,7,7], m = 2, k = 3
# 输出:12
# 解释:要制作 2 束花,每束需要 3 朵。
# 花园在 7 天后和 12 天后的情况如下:
leetcode[1482]制作 m 束花所需的最少天数 Python3实现(二分查找)
该博客介绍了一个使用Python3通过二分查找解决LeetCode问题1482的方法。博主探讨了问题的上下界,并讨论了如何通过优化二分查找来提高效率,提到了快速选择算法和官方题解的简化策略。内容主要涉及数组处理和判断特定天数是否满足条件的逻辑。
摘要由CSDN通过智能技术生成