一、递归是什么?
递归是学习C语言函数绕不开的一个话题,那什么是递归呢?
递归其实是一种解决问题的方法,在C语言中,递归就是函数自己调用自己。
写一个史上最简单的C语言递归代码:
#include <stdio.h>
int main()
{
printf("hehe\n");
main();//main函数中又调用了main函数
return 0;
}
上述就是一个简单的递归程序,只不过上面的递归只是为了演示递归的基本形式,不是为了解决问
题,代码最终也会陷入死递归,导致栈溢出(Stack overflow)。
1.1 递归的思想
把一个大型复杂问题层层转化为一个与原问题相似,但规模较小的子问题来求解;直到子问题不能再被拆分,递归就结束了。所以递归的思考方式就是把大事化小的过程。
递归中的递就是递推的意思,归就是回归的意思,接下来慢慢来体会。
1.2 递归的限制条件
递归在书写的时候,有2个必要条件:
(1)递归存在限制条件,当满足这个限制条件的时候,递归便不再继续。
(2)每次递归调用之后越来越接近这个限制条件。
在下面的例子中,我们逐步体会这2个限制条件。
二、递归举例
2.1 举例1:求n的阶乘
一个正整数的阶乘(factorial)是所有小于及等于该数的正整数的积,并且0的阶乘为1。
自然数n的阶乘写作n!。
题目:计算n的阶乘(不考虑溢出),n的阶乘就是1~n的数字累积相乘。
2.1.1 分析和代码实现
我们知道n的阶乘的公式: n! = n ∗ (n − 1)!
举例:
5! = 5*4*3*2*1
4! = 4*3*2*1
所以:5! = 5*4!
这样的思路就是把一个较大的问题,转换为一个与原问题相似,但规模较小的问题来求解的。
当n==0 的时候,n的阶乘是1,其余n的阶乘都是可以通过公式计算。
n的阶乘的递归公式如下:
那我们就可以写出函数Fact求n的阶乘,假设Fact(n)就是求n的阶乘,那么Fact(n-1)就是求n-1的阶
乘,函数如下:
int Fact(int n)
{
if(n==0)
return 1;
else
return n*Fact(n-1);
}
测试:
#include <stdio.h>
int Fact(int n)
{
if(n==0)
return 1;
else
return n*Fact(n-1);
}
int main()
{
int n = 0;
scanf("%d", &n);
int ret = Fact(n);
printf("%d\n", ret);
return 0;
}
运行结果(这里不考虑n太大的情况,n太大存在溢出):
2.1.2 画图演示
2.2 举例2:顺序打印一个整数的每一位
输入一个整数m,按照顺序打印整数的每一位。
比如:
输入:1234 输出:1 2 3 4
输入:520 输出:5 2 0
2.2.1 分析和代码实现
这个题目,放在我们面前,首先想到的是,怎么得到这个数的每一位呢?
如果n是一位数,n的每一位就是n自己
n是超过1位数的话,就得拆分每一位
1234%10就能得到4,然后1234/10得到123,这就相当于去掉了4
然后继续对123%10,就得到了3,再除10去掉3,以此类推
不断的%10 和/10 操作,直到1234的每一位都得到;
但是这里有个问题就是得到的数字顺序是倒着的
但是我们有了灵感,我们发现其实一个数字的最低位是最容易得到的,通过%10就能得到
那我们假设想写一个函数Print来打印n的每一位,如下表示:
看到这公式,很容易诱导我们将代码写成递归的形式,如下所示:
int Fib(int n)
{
if(n<=2)
return 1;
else
return Fib(n-1)+Fib(n-2);
}
测试代码:
#include <stdio.h>
int main()
{
int n = 0;
scanf("%d", &n);
int ret = Fib(n);
printf("%d\n", ret);
return 0;
}
当我们n输入为50的时候,需要很长时间才能算出结果,这个计算所花费的时间,是我们很难接受的,这也说明递归的写法是非常低效的,那是为什么呢?
其实递归程序会不断的展开,在展开的过程中,我们很容易就能发现,在递归的过程中会有重复计
算,而且递归层次越深,冗余计算就会越多。我们可以作业测试:
#include <stdio.h>
int count = 0;
int Fib(int n)
{
if(n == 3)
count++;//统计第3个斐波那契数被计算的次数
if(n<=2)
return 1;
else
return Fib(n-1)+Fib(n-2);
}
int main()
{
int n = 0;
scanf("%d", &n);
int ret = Fib(n);
printf("%d\n", ret);
printf("\ncount = %d\n", count);
return 0;
}
输出结果
这里我们看到了,在计算第40个斐波那契数的时候,使用递归方式,第3个斐波那契数就被重复计算了39088169次,这些计算是非常冗余的。所以斐波那契数的计算,使用递归是非常不明智的,我们就得想迭代的方式解决。
我们知道斐波那契数的前2个数都1,然后前2个数相加就是第3个数,那么我们从前往后,从小到大计算就行了。
这样就有下面的代码:
int Fib(int n)
{
int a = 1;
int b = 1;
int c = 1;
while(n>2)
{
c = a+b;
a = b;
b = c;
n--;
}
return c;
}
迭代的方式去实现这个代码,效率就要高出很多了。