对于a的n次幂求解这个问题,不少人看到后都觉得没有什么内容吧!我第一次想到这个问题也觉得没有什么内容,但是后来仔细想想,里面还真是有学问哦!
想想看如果我们求 a8 ,有以下两种方法:
1)a8 = a * a * a * a * a * a * a * a 需要计算 7次乘法
2)a 8 = (a * a) * A * A (其中A = a * a) 需要计算3次乘法
对于这么简单的一个算法计算步骤差别的差别是很大的
算法的思想:
一般的对于 a (2x + b) = a2x * a b,所以就有
1)b = 0时:a 2x + b = (ax)2;
2)b = 1时:a 2x + b = (ax)2 * a;
对于 an ,先把 n的二进制表示写出,那么有an = a (n1 n2 n3 n4 ..)= …
那么我们从左到右就可以如下表(n = 13的时候 1101):
n的二进制位 | 1 | 1 | 0 | 1 |
累乘 | a | a2 * a = a3 | (a3)2 = a6 | (a6)2 * a = a13 |
实现思路:
1)先将指数转换成二进制,用栈实现;
2)根据指数是1还是0进行相乘;
3)考虑到乘数太大,我们写一个大数相乘的算法。
大数相乘算法思想:
1)先把乘数列出来,第二行起每次右移一位,以12*34=408为例
(1,3) (1,4)
(2,3) (2,4)
2)将( )内的数两乘
(1,3=3) (1,4=4)
(2,3=6) (2,4=8)
3)相加,注意进位
(3) (4)
(6) (8)
-------------------------
3 10 8
-------------------------
4 0 8
大数相乘实现思路:
1)将大数作为字符串输入
2)将字符串反向存入一个int 型数组中,即:输入为“12345”,存成数组为a[0]=1,a[1]=2,a[2]=3...
3)将两个大数按整型数组(a[],b[])存好之后,按照手动计算的顺序进行计算
3.1)首先用a[0]与b[0...N-1]相乘,结果对应存入c[0...N-1]中
3.2)用a[1]与b[0...N-1]相乘,结果对应加到c[1...N-1]中(注意此处计算结果要与上一步的结果累加)
3.3)循环所有的数字得到一个结果数组c[2*N]
4)将结果数组进行分析得到结果,分析方法是将每个c[]中元素化为一位数字