我们都知道,HDFS设计是用来存储海量数据的,特别适合存储TB、PB量级别的数据。但是随着时间的推移,HDFS上可能会存在大量的小文件,这里说的小文件指的是文件大小远远小于一个HDFS块(128MB)的大小;HDFS上存在大量的小文件至少会产生以下影响:
-
消耗NameNode大量的内存
-
延长MapReduce作业的总运行时间
本文将介绍如何在MapReduce作业层面上将大量的小文件合并,以此减少运行作业的Map Task的数量;关于如何在HDFS上合并这些小文件,请参见《Hadoop小文件优化》。
Hadoop内置提供了一个 CombineFileInputFormat 类来专门处理小文件,其核心思想是:根据一定的规则,将HDFS上多个小文件合并到一个 InputSplit中,然后会启用一个Map来处理这里面的文件,以此减少MR整体作业的运行时间。
CombineFileInputFormat类继承自FileInputFormat,主要重写了List getSplits(JobContext job)方法;这个方法会根据数据的分布,mapreduce.input.fileinputformat.split.minsize.per.node、mapreduce.input.fileinputformat.split.minsize.per.rack以及mapreduce.input.fileinputformat.split.maxsize 参数的设置来合并小文件,并生成List。其中mapreduce.input.fileinputformat.split.maxsize参数至关重要:
-
如果用户没有设置这个参数(默认就是没设置),那么同一个机架上的所有小文件将组成一个InputSplit,最终由一个Map Task来处理;
-
如果用户设置了这个参数,那么同一个节点(node)上的文件将会组成一个InputSplit。
同一个 InputSplit 包含了多个HDFS块文件,这些信息存储在 CombineFileSplit 类中,它主要包含以下信息:
[code lang="java"]private Path[] paths;private long[] startoffset;private long[] lengths;private String[] locations;private long totLength;[/code]
从上面的定义可以看出,CombineFileSplit类包含了每个块文件的路径、起始偏移量、相对于原始偏移量的大小以及这个文件的存储节点,因为一个CombineFileSplit包含了多个小文件,所以需要使用数组来存储这些信息。
CombineFileInputFormat是抽象类,如果我们要使用它,需要实现createRecordReader方法,告诉MR程序如何读取组合的InputSplit。内置实现了两种用于解析组合InputSplit的类:org.apache.hadoop.mapreduce.lib.input.CombineTextInputFormat 和 org.apache.hadoop.mapreduce.lib.input.CombineSequenceFileInputFormat,我们可以把这两个类理解是 TextInputFormat 和 SequenceFileInputFormat。为了简便,这里主要来介绍CombineTextInputFormat。
在 CombineTextInputFormat 中创建了 org.apache.hadoop.mapreduce.lib.input.CombineFileRecordReader,具体如何解析CombineFileSplit中的文件主要在CombineFileRecordReader中实现。
CombineFileRecordReader类中其实封装了TextInputFormat的RecordReader,并对CombineFileSplit中的多个文件循环遍历并读取其中的内容,初始化每个文件的RecordReader主要在initNextRecordReader里面实现;每次初始化新文件的RecordReader都会设置mapreduce.map.input.file、mapreduce.map.input.length以及mapreduce.map.input.start参数,这样我们可以在Map程序里面获取到当前正在处理哪个文件。
现在我们就来看看如何使用CombineTextInputFormat类,如下:
上面的程序很简单,其实就是将HDFS上多个小文件合并到大文件中,并再每行存储了这行数据的文件路径。程序运行的结果如下:
可以看到最终结果将三个文件里面的内容合并到一个文件中。注意体会mapreduce.input.fileinputformat.split.maxsize参数的设置,大家可以不设置这个参数并且和设置这个参数运行情况对比,观察Map Task的个数变化。