Hadoop小文件的处理方法之JVM重用

处理方式一:开启Hadoop的JVM重用机制,避免海量小文件(海量的map任务)带来的JVM频繁启停。

1) uber的原理:

Yarn的默认配置会禁用uber组件,即不允许JVM重用。我们先看看在这种情况下,Yarn是如何执行一个MapReduce job的。首先,Resource Manager里的Application Manager会为每一个application(比如一个用户提交的MapReduce Job)在NodeManager里面申请一个container,然后在该container里面启动一个Application Master。container在Yarn中是分配资源的容器(内存、cpu核数等),它启动时便会相应启动一个JVM。此时,Application Master便陆续为application包含的每一个task(一个Map task或Reduce task)向Resource Manager申请一个container。等每得到一个container后,便要求该container所属的NodeManager将此container启动,然后就在这个container里面执行相应的task。等这个task执行完后,这个container便会被NodeManager收回,而container所拥有的JVM也相应地被退出。在这种情况下,可以看出每一个JVM仅会执行一Task, JVM并未被重用

 

用户可以通过启用uber组件来允许JVM重用——即在同一个container里面依次执行多个task。在yarn-site.xml文件中,改变一下几个参数的配置即可启用uber的方法:

参数| 默认值 | 描述

- mapreduce.job.ubertask.enable | (false) | 是否启用user功能。如果启用了该功能,则会将一个“小的application”的所有子task在同一个JVM里面执行,达到JVM重用的目的。这个JVM便是负责该application的ApplicationMaster所用的JVM(运行在其container里)。那具体什么样的application算是“小的application"呢?下面几个参数便是用来定义何谓一个“小的application"

 

- mapreduce.job.ubertask.maxmaps | 9 | map任务数的阀值,如果一个application包含的map数小于该值的定义,那么该application就会被认为是一个小的application

 

- mapreduce.job.ubertask.maxreduces | 1 | reduce任务数的阀值,如果一个application包含的reduce数小于该值的定义,那么该application就会被认为是一个小的application。不过目前Yarn不支持该值大于1的情况“CURRENTLY THE CODE CANNOT SUPPORT MORE THAN ONE REDUCE”

 

- mapreduce.job.ubertask.maxbytes | | application的输入大小的阀值。默认为dfs.block.size的值。当实际的输入大小部小于该值的设定,便会认为该application为一个小的application。

 

 

最后,我们来看当uber功能被启用的时候,Yarn是如何执行一个application的。首先,Resource Manager里的Application Manager会为每一个application在NodeManager里面申请一个container,然后在该container里面启动一个Application Master。containe启动时便会相应启动一个JVM。此时,如果uber功能被启用,并且该application被认为是一个“小的application”,那么Application Master便会将该application包含的每一个task依次在这个container里的JVM里顺序执行,直到所有task被执行完("WIth 'uber' mode enabled, you'll run everything within the container of the AM itself")。这样Application Master便不用再为每一个task向Resource Manager去申请一个单独的container,最终达到了 JVM重用(资源重用)的目的。

 

yarn-site.xml里的配置示例:

  1. <!-- 开启uber模式(针对小作业的优化) -->  
  1.   <property>  
  2.     <name>mapreduce.job.ubertask.enable</name>  
  3.     <value>true</value>  
  4.   </property>  
  5.   
  6.   <!-- 配置启动uber模式的最大map数 -->  
  7.   <property>  
  8.     <name>mapreduce.job.ubertask.maxmaps</name>  
  9.     <value>9</value>  
  10.   </property>  
  11.   
  12.   <!-- 配置启动uber模式的最大reduce数 -->  
  13.   <property>  
  14.     <name>mapreduce.job.ubertask.maxreduces</name>  
  15.     <value>1</value>  
  16.   </property>  

处理方式二:将多个小文件合成一个文件或合成少量文件,这样可以减少map的任务数量

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值