MapReduce优化方法总结

1 MapReduce 跑的慢的原因

2 MapReduce优化方法

MapReduce优化方法主要从六个方面考虑:数据输入、Map阶段、Reduce阶段、IO传输、数据倾斜问题和常用的调优参数。

1 数据输入

2 Map阶段

3 Reduce阶段



4 I/O传输

5 数据倾斜问题

 

6 常用的调优参数

1.资源相关参数

(1)以下参数是在用户自己的MR应用程序中配置就可以生效(mapred-default.xml)

表4-12

配置参数

参数说明

mapreduce.map.memory.mb

一个MapTask可使用的资源上限(单位:MB),默认为1024。如果MapTask实际使用的资源量超过该值,则会被强制杀死。

mapreduce.reduce.memory.mb

一个ReduceTask可使用的资源上限(单位:MB),默认为1024。如果ReduceTask实际使用的资源量超过该值,则会被强制杀死。

mapreduce.map.cpu.vcores

每个MapTask可使用的最多cpu core数目,默认值: 1

mapreduce.reduce.cpu.vcores

每个ReduceTask可使用的最多cpu core数目,默认值: 1

mapreduce.reduce.shuffle.parallelcopies

每个Reduce去Map中取数据的并行数。默认值是5

mapreduce.reduce.shuffle.merge.percent

Buffer中的数据达到多少比例开始写入磁盘。默认值0.66

mapreduce.reduce.shuffle.input.buffer.percent

Buffer大小占Reduce可用内存的比例。默认值0.7

mapreduce.reduce.input.buffer.percent

指定多少比例的内存用来存放Buffer中的数据,默认值是0.0

(2)应该在YARN启动之前就配置在服务器的配置文件中才能生效(yarn-default.xml)

表4-13

配置参数

参数说明

yarn.scheduler.minimum-allocation-mb  

给应用程序Container分配的最小内存,默认值:1024

yarn.scheduler.maximum-allocation-mb          

给应用程序Container分配的最大内存,默认值:8192

yarn.scheduler.minimum-allocation-vcores   

每个Container申请的最小CPU核数,默认值:1

yarn.scheduler.maximum-allocation-vcores  

每个Container申请的最大CPU核数,默认值:32

yarn.nodemanager.resource.memory-mb  

给Containers分配的最大物理内存,默认值:8192

(3)Shuffle性能优化的关键参数,应在YARN启动之前就配置好(mapred-default.xml)

表4-14

配置参数

参数说明

mapreduce.task.io.sort.mb  

Shuffle的环形缓冲区大小,默认100m

mapreduce.map.sort.spill.percent  

环形缓冲区溢出的阈值,默认80%

2.容错相关参数(MapReduce性能优化)

表4-15

配置参数

参数说明

mapreduce.map.maxattempts

每个Map Task最大重试次数,一旦重试参数超过该值,则认为Map Task运行失败,默认值:4。

mapreduce.reduce.maxattempts

每个Reduce Task最大重试次数,一旦重试参数超过该值,则认为Map Task运行失败,默认值:4。

mapreduce.task.timeout

Task超时时间,经常需要设置的一个参数,该参数表达的意思为:如果一个Task在一定时间内没有任何进入,即不会读取新的数据,也没有输出数据,则认为该Task处于Block状态,可能是卡住了,也许永远会卡住,为了防止因为用户程序永远Block住不退出,则强制设置了一个该超时时间(单位毫秒),默认是600000。如果你的程序对每条输入数据的处理时间过长(比如会访问数据库,通过网络拉取数据等),建议将该参数调大,该参数过小常出现的错误提示是“AttemptID:attempt_14267829456721_123456_m_000224_0 Timed out after 300 secsContainer killed by the ApplicationMaster.”。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值