hdu 2544 最短路

本文详细介绍了三种经典的最短路径算法:SPFA、Dijkstra和Floyd,并通过具体实例展示了如何使用这些算法来解决实际问题。SPFA适用于边权非负的情况,Dijkstra则是一种贪心算法,而Floyd则可以解决任意两点间的最短路径问题。
摘要由CSDN通过智能技术生成

点击打开链接

最短路

Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 72343    Accepted Submission(s): 31588


Problem Description
在每年的校赛里,所有进入决赛的同学都会获得一件很漂亮的t-shirt。但是每当我们的工作人员把上百件的衣服从商店运回到赛场的时候,却是非常累的!所以现在他们想要寻找最短的从商店到赛场的路线,你可以帮助他们吗?

 

Input
输入包括多组数据。每组数据第一行是两个整数N、M(N<=100,M<=10000),N表示成都的大街上有几个路口,标号为1的路口是商店所在地,标号为N的路口是赛场所在地,M则表示在成都有几条路。N=M=0表示输入结束。接下来M行,每行包括3个整数A,B,C(1<=A,B<=N,1<=C<=1000),表示在路口A与路口B之间有一条路,我们的工作人员需要C分钟的时间走过这条路。
输入保证至少存在1条商店到赛场的路线。
 

Output
对于每组输入,输出一行,表示工作人员从商店走到赛场的最短时间
 

Sample Input
  
  
2 1 1 2 3 3 3 1 2 5 2 3 5 3 1 2 0 0
 

Sample Output
  
  
3 2
 

第一次做最短路的题,看了别人写的作为参考,我觉得spfa不错。spfa和Dijkstra和Floyd,代码上差别不是很大,只是一部分不同,不同的正是它们之间的区别。


Spfa:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;
const int N=10005;
int cost[N][N];
int dp[N];
bool vis[N];
const int inf=0x3f3f3f3f;
void spfa(int s,int n)
{
    int i,now;
    for(i=1;i<=n;i++)
    {
        dp[i]=inf;
        vis[i]=false;
    }
    dp[s]=0;
    queue<int>ff;
    ff.push(s);
    vis[s]=true;
    while(!ff.empty())
    {
        now=ff.front();
        ff.pop();
        vis[now]=false;
        for(i=1;i<=n;i++)
        {
            if(dp[i]>dp[now]+cost[now][i])
            {
                dp[i]=dp[now]+cost[now][i];
                if(!vis[i])
                {
                    ff.push(i);
                    vis[i]=true;
                }
            }
        }
    }
}
int main()
{
    int n,m;
    while(cin>>n>>m,n+m)
    {
        for(int i=1;i<=n;i++)
        {
            for(int j=1;j<=n;j++)
            {
                if(i==j)
                    cost[i][j]=0;
                else
                    cost[i][j]=cost[j][i]=inf;
            }
        }
        int a,b,c;
        for(int i=1;i<=m;i++)
        {
            scanf("%d%d%d",&a,&b,&c);
            cost[a][b]=cost[b][a]=c;
        }
        spfa(1,n);
        printf("%d\n",dp[n]);
    }
    return 0;
}

Dijkstra:

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
int cost[110][110];
int dp[110];
const int inf=0x3f3f3f3f;
int n,m;
void Dijkstra(int s)
{
	int vis[110]={0};
	int pos,mi;
	int i,j;
	for(i=1;i<=n;i++)
		dp[i]=cost[1][i];
	vis[s]=1;
	dp[s]=0;
	for(i=1;i<=n;i++)
	{
		mi=inf;
		for(j=1;j<=n;j++)
		{
			if(dp[j]<mi&&!vis[j])
			{
				mi=dp[j];
				pos=j;
			}
		}
		vis[pos]=1;
		for(j=1;j<=n;j++)
		{
			if(dp[j]>dp[pos]+cost[pos][j]&&!vis[j])
				dp[j]=dp[pos]+cost[pos][j];
		}
	}
}
int main()
{
	while(cin>>n>>m)
	{
		if(n==0&&m==0)
			break;
		for(int i=1;i<=n;i++)
		{
			for(int j=1;j<=n;j++)
				cost[i][j]=cost[j][i]=dp[i]=inf;
			cost[i][i]=0;
		}
		int x,y,z;
		for(int i=1;i<=m;i++)
		{
			cin>>x>>y>>z;
			if(cost[x][y]>z)
				cost[x][y]=cost[y][x]=z;
		}
		Dijkstra(1);
		printf("%d\n",dp[n]);
	}
	return 0;
}


Floyd:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int cost[110][110];
int dp[110];
const int inf=0x3f3f3f3f;
int n,m;
int main()
{
	while(cin>>n>>m)
	{
		if(n==0&&m==0)
			break;
		for(int i=1;i<=n;i++)
		{
			for(int j=1;j<=n;j++)
				cost[i][j]=cost[j][i]=inf;
			cost[i][i]=0;
		}
		int x,y,z;
		for(int i=1;i<=m;i++)
		{
			cin>>x>>y>>z;
			if(cost[x][y]>z)
				cost[x][y]=cost[y][x]=z;
		}
		for(int k=1;k<=n;k++)//Floyd
		{
			for(int i=1;i<=n;i++)
			{
				for(int j=1;j<=n;j++)
					cost[i][j]=min(cost[i][j],cost[i][k]+cost[k][j]);
			}
		}
		printf("%d\n",cost[1][n]);
	}
	return 0;
}


参考博客

http://blog.csdn.net/lttree/article/details/27186637


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值