最短路
Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 72343 Accepted Submission(s): 31588
Problem Description
在每年的校赛里,所有进入决赛的同学都会获得一件很漂亮的t-shirt。但是每当我们的工作人员把上百件的衣服从商店运回到赛场的时候,却是非常累的!所以现在他们想要寻找最短的从商店到赛场的路线,你可以帮助他们吗?
Input
输入包括多组数据。每组数据第一行是两个整数N、M(N<=100,M<=10000),N表示成都的大街上有几个路口,标号为1的路口是商店所在地,标号为N的路口是赛场所在地,M则表示在成都有几条路。N=M=0表示输入结束。接下来M行,每行包括3个整数A,B,C(1<=A,B<=N,1<=C<=1000),表示在路口A与路口B之间有一条路,我们的工作人员需要C分钟的时间走过这条路。
输入保证至少存在1条商店到赛场的路线。
输入保证至少存在1条商店到赛场的路线。
Output
对于每组输入,输出一行,表示工作人员从商店走到赛场的最短时间
Sample Input
2 1 1 2 3 3 3 1 2 5 2 3 5 3 1 2 0 0
Sample Output
3 2
第一次做最短路的题,看了别人写的作为参考,我觉得spfa不错。spfa和Dijkstra和Floyd,代码上差别不是很大,只是一部分不同,不同的正是它们之间的区别。
Spfa:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;
const int N=10005;
int cost[N][N];
int dp[N];
bool vis[N];
const int inf=0x3f3f3f3f;
void spfa(int s,int n)
{
int i,now;
for(i=1;i<=n;i++)
{
dp[i]=inf;
vis[i]=false;
}
dp[s]=0;
queue<int>ff;
ff.push(s);
vis[s]=true;
while(!ff.empty())
{
now=ff.front();
ff.pop();
vis[now]=false;
for(i=1;i<=n;i++)
{
if(dp[i]>dp[now]+cost[now][i])
{
dp[i]=dp[now]+cost[now][i];
if(!vis[i])
{
ff.push(i);
vis[i]=true;
}
}
}
}
}
int main()
{
int n,m;
while(cin>>n>>m,n+m)
{
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
if(i==j)
cost[i][j]=0;
else
cost[i][j]=cost[j][i]=inf;
}
}
int a,b,c;
for(int i=1;i<=m;i++)
{
scanf("%d%d%d",&a,&b,&c);
cost[a][b]=cost[b][a]=c;
}
spfa(1,n);
printf("%d\n",dp[n]);
}
return 0;
}
Dijkstra:
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
int cost[110][110];
int dp[110];
const int inf=0x3f3f3f3f;
int n,m;
void Dijkstra(int s)
{
int vis[110]={0};
int pos,mi;
int i,j;
for(i=1;i<=n;i++)
dp[i]=cost[1][i];
vis[s]=1;
dp[s]=0;
for(i=1;i<=n;i++)
{
mi=inf;
for(j=1;j<=n;j++)
{
if(dp[j]<mi&&!vis[j])
{
mi=dp[j];
pos=j;
}
}
vis[pos]=1;
for(j=1;j<=n;j++)
{
if(dp[j]>dp[pos]+cost[pos][j]&&!vis[j])
dp[j]=dp[pos]+cost[pos][j];
}
}
}
int main()
{
while(cin>>n>>m)
{
if(n==0&&m==0)
break;
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
cost[i][j]=cost[j][i]=dp[i]=inf;
cost[i][i]=0;
}
int x,y,z;
for(int i=1;i<=m;i++)
{
cin>>x>>y>>z;
if(cost[x][y]>z)
cost[x][y]=cost[y][x]=z;
}
Dijkstra(1);
printf("%d\n",dp[n]);
}
return 0;
}
Floyd:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int cost[110][110];
int dp[110];
const int inf=0x3f3f3f3f;
int n,m;
int main()
{
while(cin>>n>>m)
{
if(n==0&&m==0)
break;
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
cost[i][j]=cost[j][i]=inf;
cost[i][i]=0;
}
int x,y,z;
for(int i=1;i<=m;i++)
{
cin>>x>>y>>z;
if(cost[x][y]>z)
cost[x][y]=cost[y][x]=z;
}
for(int k=1;k<=n;k++)//Floyd
{
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
cost[i][j]=min(cost[i][j],cost[i][k]+cost[k][j]);
}
}
printf("%d\n",cost[1][n]);
}
return 0;
}
http://blog.csdn.net/lttree/article/details/27186637